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LISA BORLAND

A Synergetic Approach to the Dynamics  
of Financial Markets

Synergetics,1 a fascinating interdisciplinary science initially proposed by Hermann 
Haken in the late 1960s, is a framework for understanding the interaction effects 
of very large complex systems, with an emphasis on explaining how self-organized 
macroscopic phenomena can emerge as a result of these underlying interactions. 
An especially exciting aspect is that entirely new and distinct properties of the sys-
tem can emerge somewhat spontaneously. �e approach has seen great success in a 
host of fields ranging from physics and chemistry to brain science and economics.

Commonalities of synergetic systems are such that they are open systems con-
sisting of very many interacting sub systems. �ey are far from equilibrium, and 
there are often dynamics that emerge on different time scales so that slower moving 
patterns, or ‘modes’ can enslave or dominate, the faster moving dynamics. �ese 
dominant modes show up as the macroscopic organized patterns or behavior of the 
system and are therefore called order parameters. Self-organized macroscopic struc-
ture is not always present in the system but is usually brought on when an external 
variable called the control parameter (such as for example the temperature, energy 
flux, or some other characteristic of the environment) surpasses a critical threshold. 

�e most often used example to elucidate the general concepts of synergetics is 
that of laser light. Here, the interacting subsystems are the excited electrons of the 
atoms. All else equal, these will each transition form an outer to inner orbit inde-
pendently of the others, and in aggregate white light will be emitted. But if energy 
is pumped into the system above a certain threshold, a coherent field emerges 
which interacts with the electrons in such way that they follow the coherent wave 
and all make lock-step transitions so that the light emitted is of the same wave-
length, namely laser light. Another example comes from fluid dynamics. If a pan of 
oil is heated slowly from below, under certain conditions a hexagonal pattern will 
appear. It is almost as if the oil molecules know exactly where to line up in the pan 
to create this pattern. But in fact, it is again an example of a slower mode emerging 
under certain environmental conditions, which enslaves the faster dynamics of the 
system resulting in a macroscopic self-organized structure. 

An additional interesting aspect of synergetics is the interplay between deter-
ministic and random forces. Indeed, the presence of random fluctuations in the 
system allows for the macroscopic properties of the system to evolve into new 
(meta)stable states as the control parameter changes. What is actually happening is 
that the old state becomes unstable, much as a pencil balancing on its tip. �e 
pencil can in principle stay on its tip if carefully set up, but small fluctuations will 

  1 See Hermann Haken: Synergetics: An Introduction, Berlin/New York, NY: Springer 1977.
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act upon it and it will ultimately fall in a certain direction that in fact depends on 
the fluctuations. In a similar fashion, the presence and structure of noise play essen-
tial roles in driving the evolution of a synergetic system. 

Sometimes, as in the case of the laser, the self-organizing dynamics of the order 
parameter can be derived from microscopic first principles. In many other cases, 
however, this is not possible and instead, a high level description of the stochastic 
dynamics of the order parameter suffices. In yet other cases, an intermediate level 
of description can be attained, starting not with the very basic, most finely grained 
dynamics of the sub-systems, but with a slightly higher level of system dynamics, 
referred to as the mesoscopic level is possible. In this paper, the cooperative dynam-
ics of financial markets will be discussed in such a context.

Indeed, financial markets exhibit all the properties of a synergetic system: Traders 
can be seen as the sub-systems, who all interact with each other and with external 
information so as to ultimately give rise to dynamics which determine the price of 
traded assets. Dynamics of the individual assets exhibit universal features in the struc-
ture of the noise (or ‘volatility’) of the prices. �en, under certain conditions when 
fear or uncertainty in the environment become large, the financial markets appear to 
behave in a self-organized, highly correlated fashion, giving rise to market panic. 

�e questions of synergetics as it pertains to the dynamics of financial markets 
(which is the focus in the present contribution) is related to – yet quite different 
from – the tantalizing discussion on the role of synergetics and economics. In re-
cent years, we find quite a few articles discussing this topic. �ose models are pri-
marily concerned with explaining how a national economy can be interpreted from 
the point of view of synergetics. It is perhaps interesting to note that many of these 
articles stem from German and European authors2 who are, probably for obvious 
reasons of locality, more exposed to the general ideas of synergetics. In the US, for 
example, we see fewer of these discussions; I believe there is also a terminology issue 
which does not necessarily mean that studies along the lines of Haken’s synergetics 
are not present, the author may be unaware of them or they may just not always be 
referred to by that name. 

The Dynamics of Financial Markets

Financial markets represent perhaps some of the most complex systems in existence 
with the added pitfall that it is nearly impossible to perform experiments on or with 
them. In addition, the system is inherently highly non-stationary. �e price forma-
tion process is clearly the result of both local and global interactions on a multitude 
of different time scales. Individuals all over the world (and, increasingly, their respec-

  2 See Viktor Yakimstov: “Theoretical Basis for Synergetics of Economic Processes”, in: European 
Scientific Journal 10 (2014) 4, pp. 83–89. Andreas Liening: “Synergetics – Fundamental Attri- 
butes of the Theory of Self-Organization and its Meaning for Economics”, in: Modern Economy 5 
(2014), pp. 41–847.
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tive algorithms) post orders to buy or sell a particular stock at a particular price. �e 
motivation can be purely need based and utilitarian, but it can also be purely specu-
lative, as with a trader who holds the view that the stock will go up or down over a 
certain time horizon. Some traders care about time horizons of months or years, 
while others are solely interested in time horizons on the order of microseconds. 
Transactions are then cleared at a certain price at a given time, either by passing 
through the hands of a specialist on the trading floor or automatically on the many 
electronic markets which have sprouted in recent years. Most of these transactions 
have been recorded for at least two decades on a tick by tick basis, and this has re-
sulted in an ever-growing database of, among other things, the historical prices and 
traded volumes of assets. �e ‘price’ of a stock at a given time is considered to be the 
price at which the most recent transaction occurred. Note that in a fragmented mar-
ket (such as the foreign exchange market) or in markets where the flow of informa-
tion occurs at varying speeds, there is not necessarily one single definition of the 
price available, but this interesting feature is not one we shall not delve into here. 

Apart from the fundamental properties of the company whose stock is being 
traded, factors such as supply and demand clearly must affect the price of stocks, as 
well as general trends in the particular industry in question. Stock specific events, 
such as mergers and acquisitions, have a big impact, as do world events, such as 
wars, terrorist attacks, and natural disasters. Recent examples of this are the dra-
matic events seen in 2007 and 2008 which were perhaps caused by fundamental 
flaws in our credit-based economy. �e European debt crisis is another example, as 
is government intervention.

Stocks are, for the most part, traded on a central limit order book, such as the 
New York Stock Exchange. Modeling the intricate dynamics and micro-structure 
of this order book is a field of study which has gained traction in recent years.3 If 
we borrow terminology from physics, this level of description could be seen as 
similar to the microscopic level. However, it is often more tractable to use a meso-
scopic description which aims at describing the price process as a stochastic Lan-
gevin equation where the key feature is how to capture the volatility, or noise, that 
drives the process.

�is is the most important effect since stock price changes (or returns) are essen-
tially unpredictable from moment to moment. �erefore, the deterministic part of 
the equation is less interesting from a modeling point of view. �is mesoscopic 
view fits well into the framework of description employed within the field of syn-
ergetics and constitutes the level of description that we shall explore here.

For many years and in a large body of the financial literature, the random nature 
of price time series was modeled as a simple Brownian motion by most. �e first to 

  3 See Jean-Philippe Bouchaud/Yuval Gefen/Marc Potters/Matthieu Wyart: “Fluctuations and Re-
sponse in Financial Markets: The Subtle Nature of Random Price Changes”, in: Quantitative Fi-
nance 4 (2004), pp. 176–190. James Doyne Farmer/Austin Gerig/Fabrizio Lillo/Mike Szabolcs: 
“Market Efficiency and the Long-Memory of Supply and Demand: Is Price Impact Variable and 
Permanent or Fixed and Temporary?”, in: Quantitative Finance 6 (2006), pp. 107–112.
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propose such a model was Louis Bachelier in his thesis in 1900, which lay largely 
undiscovered until much later when Fischer Black and Myron Scholes wrote their 
famous paper in 1973 based on a very similar model.4 �ey made important contri-
butions in particular to the pricing of options, for which they received the Nobel 
Prize. Options are traded instruments that give the holder the right, not the obliga-
tion, to buy a stock at a later date at a certain price called the strike price. In Black’s 
and Scholes’s work, the log price is assumed to follow a Gaussian distribution. Even 
today, many trading assumptions and risk control notions are based off of that prior. 
However, in more recent years, there has been a large body of work documenting in 
quite some detail and with statistical accuracy (due largely to the vast amount of 
observations available) that the time series of financial market data show some in-
triguing statistical properties that deviate substantially from the Gaussian assump-
tion. �ese features are referred to as stylized facts.5 It is interesting to note that 
many of the stylized facts appear to be universal, in the sense that they are exhibited 
by a variety of financial instruments relating to commodities as diverse as wheat, 
currencies (such as the Euro-Dollar rate), and individual stocks. Some are also ex-
hibited over various periods in history (and can therefore be seen as stationary); 
others are exhibited on multiple time scales (and so can be seen as self-similar). 

Other interesting properties pertain to the dynamics and statistics of the 
cross-section of financial instruments. Ultimately, the goal is to comprehend and 
model the joint stochastic process of the price formation dynamics of the collection 
of stocks across time. �erefore, investigating various statistical properties both 
across time and across stocks is essential. �e challenge then lies in coming up with 
a model that captures the dynamics inherent in the data. In addition, it is desirable 
that such a model be somewhat intuitive, parsimonious, and somewhat easy to use 
from a mathematical point of view. 

Next follows a brief review of a class of models that have been proposed in recent 
years, aimed at modeling the stock price dynamics in such a way as to capture as 
many of the statistical properties of real financial data as possible.6 It will be shown 
how these models could be used for important applications such as the pricing of 
options and other derivative instruments. In the first part of this article, the focus 
is on financial time series, and in the second part cross-sectional dynamics across a 
universe of stocks are discussed. In all cases, it becomes apparent that notions of 
nonlinear cooperative feedback appear to be essential ingredients in this very com-
plex real-world system.

  4 See Fischer Black/Myron Scholes: “The Pricing of Options and Corporate Liabilities”, in: The 
Journal of Political Economy 81 (1973), pp. 637–654.

  5 See Jean-Philippe Bouchaud/Marc Potters: Theory of Financial Risks and Derivative Pricing, Cam-
bridge: Cambridge University Press 2004. Parameswaran Gopikrishnan/Vasiliki Plerou/Luís A. 
Nunes Amaral/Martin Meyer/H. Eugene Stanley: “Scaling of the Distribution of Fluctuations of 
Financial Market Indices”, in: Physical Review E 60 (1999), pp. 5305–5316.

  6 See Lisa Borland: “A Theory of Non-Gaussian Option Pricing”, in: Quantitative Finance 2 (2002), 
pp. 415–431. Lisa Borland/Jean-Philippe Bouchaud: “A Non-Gaussian Option Pricing Model 
with Skew”, in: Quantitative Finance 4 (2004), pp. 499–514.
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Stylized Facts across Time

�e time series of stock returns, defined as relative price changes or log price 
changes, typically exhibits intermittent clusters of higher versus lower magnitude 
returns, as shown in the bottom part of figure 1. �is phenomenon is known as 
volatility clustering. As a consequence, the probability distribution of these finan-
cial returns is typically fat-tailed. In fact, it has been shown that the distribution of 
both intra-day and daily returns can be very well fit by a power-law tail of about -3 
(referred to by some as the cubic law of finance).7 �is tail index is consistent with 
that of a Student’s-t distribution with 3–5 degrees of freedom (equivalent to a so-
called Tsallis distribution with index q = 1.4–1.5). �is very same distribution fits 
to returns from a wide variety of financial instruments, such as stocks, currencies, 
and commodities, with much the same tail index (see figure 2). Because of this 
rather universal behavior, the non-Gaussian distribution is an important stylized 
fact. �erefore, any model of financial data should clearly try to capture at least this 
important feature. A related stylized fact is constituted by the observation that, as 
the time lag over which returns are calculated is increased, this power-law behavior 
of the distribution of returns persists for quite a while. In fact, the distribution only 
becomes Gaussian after the time lag approaches the order of a few months.6 �is 
feature is a signature of long-range memory being involved in the process, implying 
that while the random innovations from event to event are uncorrelated, they are 
not necessarily independent.

Volatility is typically defined as the square root of the squared variation of re-
turns. Obviously, this definition is not unique because one can choose to calculate 
the squared variation over an arbitrary period of time. But as it turns out, the sta-
tistical properties of volatility are not that sensitive to the exact choice of a time 
frame. If financial data were Gaussian distributed, then the volatility would be the 
standard deviation of that distribution. In fact, this assumption is still made both 
by practitioners and in theoretical works in mathematical finance, although there 
is increasing awareness about the shortfalls of such an assumption. In practice, for 
example, the devastating effects of the Gaussian assumption were seen in August of 
2007 and October of 2008, when investors panicked claiming that ‘25-sigma 
events’ were wiping them out. In fact, these types of statements are only true if the 
underlying distribution is assumed to be Gaussian. If a heavy-tailed distribution is 
assumed instead, then the behavior of the markets as we have seen them in recent 
years is to be expected with a probability of about one or two extreme events per 
decade. Clearly, it is extremely important for hedging and risk control purposes to 
have a richer understanding of volatility.

�e time series of the volatility of the Dow Jones index for the past century ex-
hibits clear periods of lower and higher volatility typically clustered together. Note 

  7 See Xavier Gabaix/Parameswaran Gopikrishnan/Vasiliki Plerou/H. Eugene Stanley: “A Theory of 
Power-Law Distributions in Financial Market Fluctuations”, in: Nature 423 (2003), pp. 267–
270.
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Figure 1: �e time series of returns of the Dow Jones index since 1928 (bottom).  
�e top shows the time series of returns resulting from a cooperative multi-timescale feed-
back model, which captures most of the interesting statistical features of real returns, such 
as the clustering of volatility.

Figure 2: �e empirical distribution of real market returns (dots) is shown together with  
a Gaussian distribution of the same standard deviation (red) and a fit with a fat-tailed 
Student’s-t distribution with 5 degrees of freedom (Tsallis distribution of index q = 1.5)  
as shown by the black line.
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that while the distribution of returns is fat-tailed, volatility itself follows a distribu-
tion that is close to log-normal. Interestingly, the same type of statistics is valid for 
volatility calculated either daily or every 5 minute within the day, implying a 
self-similar structure. �e fact that volatility is self-similar on different time scales 
is a universal feature. �e clustering feature that is observed is a signature that 
memory is inherent in volatility; if volatility is high, it will persist for a while. �is 
memory can be quantified by looking at the how the autocorrelation of volatility 
persists over increasing lags in time. Causality is also a feature inherent in the struc-
ture of volatility. In other words, if you take a time series of volatility, the statistical 
properties of future volatility conditioned on the past are not the same as the prop-
erties of past volatility conditioned on the future. �is reinforces the notion that 
volatility has a memory. �ere are some other interesting statistical features that 
relate to conditional volatility. Specifically, if you look at the probability of observ-
ing the volatility of a certain magnitude given that a volatility shock larger than a 
set threshold was just observed, what you will see translates into an instance of the 
Omori law for volatility8. Just as earthquakes are followed by aftershocks, volatility 
shocks are followed by other larger than normal shocks. Another stylized fact of 
volatility that exhibits some temporal asymmetry is the so-called leverage effect, 
which describes the positive correlation between negative returns and volatility: 
large negative price drops will give rise to subsequently higher volatility.

Stock Price Models

Several different models have been proposed in an attempt to capture fat tails and 
volatility clustering which do not exist in the Gaussian, Bachelier or Black-Scholes 
models Popular approaches include Lévy processes8, which induce jumps and thus 
fat tails on short time scales, but convolve too quickly to the Gaussian distribution 
as the time scale increases. Stochastic volatility models, such as the Heston model9, 
where the volatility is assumed to follow its own mean-reverting stochastic process, 
reproduce fat tails, but do not account for the long-term memory observed in the 
data. �e same holds true for the simplest of Robert Fry Engle’s Nobel Prize win-
ning GARCH models10 in which the volatility is essentially an autoregressive func-
tion of past returns. Multi-fractal stochastic volatility models (similar to cascade 
models of turbulent flow) reproduce many of the stylized facts and are thus promis- 
ing candidates for more accurate representations of these phenomena with the  

  8 See Fabrizio Lillo/Rosario N. Mantegna: “Power law relaxation in a complex system: Omori law 
after a financial market crash”, in: Physical Review E 68 (2003), DOI: 016119. 

  9 See Steven L. Heston: “A Closed-Form Solution for Options with Stochastic Volatility with Ap-
plications to Bond and Currency Options”, in: The Review of Financial Studies 6 (1993), pp. 327–
343.

 10 See Tim Bollerslev/Robert Fry Engle/Daniel B. Nelson: “ARCH Models”, in: Robert Fry Engle/
Daniel L. McFadden (eds.): Handbook of Econometrics, Vol. 4, Amsterdam: Elsevier Science 1994, 
pp. 2961–3038.
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limitation that they are strictly symmetric in terms of time reversal, a stark contrast 
to the empirical evidence.11 In addition, most of the above-mentioned models are 
difficult if not impossible to deal with analytically. Analytic tractability is desirable 
for reasons such as efficiently calculating the fair price of options or other financial 
derivatives traded globally in high volumes.

A few years ago, a rather realistic model of stock returns based on a statistical 
feedback model was developed. It was inspired by ideas from non-extensive ther-
modynamics12 that aimed at including cooperative effects in the spirit of synerget-

 11 See Jean-François Muzy/Jean Delour/Emmanuel Bacry: “Modelling Fluctuations of Financial 
Time Series: From Cascade Process to Stochastic Volatility Model”, in: The European Physical 
Journal B 17 (2000), pp. 537–548.

 12 See Constantino Tsallis: Introduction to Nonextensive Statistical Mechanics: Approaching a Complex 
World, New York, NY: Springer 2009.

Figure 3: �e Black-Scholes model for option pricing is based on a Gaussian distribution. 
�e volatilities that need to be used with that model to capture real prices vary with the 
option strike price (the price at which the holder has the right to purchase the underlying 
stock) in such a way to compensate for tail effects. �e non-Gaussian statistical feedback 
model takes into account nonlinear cooperative effects and yields option prices that closely 
match the market with just one volatility parameter. For comparative purposes, the implied 
Black-Scholes volatilities of that model (circles) are shown here with implied volatilities of 
real option prices (triangles).
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ics. In order to incorporate the afore-mentioned power-law statistics on the distri-
butions of real returns, which are very stable over time scales ranging from minutes 
to weeks, and which only slowly converge to Gaussian statistics in very long time 
scales, it was proposed that the fluctuations driving stock returns could be modeled 
by a statistical feedback process. �is was formulated in such a manner that the 
volatility at a given instant was inversely proportional to the probability of observ-
ing the most recent price, given an initial price level at time 0. Hence, unusually big 
(rare) returns lead to larger subsequent volatility, and vice versa, more normal re-
turns lead to more subdued volatility. 

�erefore, the statistical feedback term can be seen as capturing the market sen-
timent or collective behavior of market participants. Intuitively, this means that, if 
the market players observe unusually high deviations of the log price change, the 
effective volatility will be high due to general market panic. Conversely, traders will 
react more moderately if the price change is close to its more typical or less extreme 
values. As a result, the model exhibits intermittent behavior consistent with that 
observed in the effective volatility of markets. To incorporate the subtle effect of 
skew and the stylized fact known as the leverage effect, we further extended the 
stock price process to include asymmetries.13 �is model was used to derive gener-
alized formulae for pricing options in the presence of fat tails. �e model exhibits 
remarkably good agreement with real option prices (figure 3).

The Multi-Timescale Model

Although very successful for pricing options, the statistical feedback model is still 
not entirely realistic. �e main reason is that there is one single characteristic time 
in that model. In particular, the effective volatility at each time is related to the 
conditional probability of observing an outcome of the process at time t given what 
was observed at time t = 0. For option pricing, this is perfectly reasonable because 
one is interested in the probability of the price reaching a certain value at some 
point in the future based entirely on one’s current knowledge. However, this is a 
shortcoming when it comes to modelling real stock returns. Particularly in real 
markets, traders drive the price of the stock based on their own trading horizon. 
�ere are traders who react to each tick the stock makes and others who react to 
what they believe to be relevant on the horizon of a year or more, and, of course, 
there is the entire spectrum in between. �erefore, an optimal model of real price 
movements should attempt to capture this existence of multiple time scales and 
long-range memories.

A natural extension of this model would mean generalizing its scope in order to 
include feedback over many time scales instead of just one.14

 13 See Borland/Bouchaud: “A Non-Gaussian Option Pricing Model with Skew” (note 6).
 14 See Lisa Borland/Jean-Philippe Bouchaud: “On a Multi-Timescale Statistical Feedback Model for 

Volatility Fluctuations”, in: The Journal of Investment Strategies 1 (2011/2012), pp. 65–104.
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If one assumes that the mean drift of the stock can be set to zero, then the ran-
dom price return dy at time i is constructed as the product of a time-dependent 
volatility σi  and a random variable ωi of zero mean and unit variance:

dyi = σi dωi      Equation 1

�e volatility for a given stock k is written to include feedback over multiple time 
scales i-j:

σi
k = σ0  1+∑gi-j(yj

k – yi
k)2 

j=1

∞
1
2

 

   Equation 2

where i and j correspond to time. Here, σ0 is the baseline volatility and the pa-
rameter g is a coupling constant that controls the strength of the feedback. �is 
coupling g scales as an inverse power of the time scale g = g0 (i – j)–γ, where y deter-
mines the decay rate of memory in the system which represents the relative impor-
tance between short-term and long-term traders. �e model can be calibrated to 
real stock data and the main stylized facts of stock returns are reproduced. In figure 
1, a simulation of that model is shown. �e process describes real data very well, 
with obvious periods of lower and higher volatility clustering together. 

Another powerful class of processes which has recently been used to describe the 
arrival of clustered volatility events is the self-exciting Hawkes process.15 �is is 
similar in spirit to the multi-timescale feedback model in that the intensity of ar-
rival times of events is modeled by a function that contains a kernel which attri- 
butes the weights to be given to past events. �ereby, memory is captured in this 
process, a key feature of all realistic models of stock price innovations.

Statistical Signatures across Stocks: The Self-Organization  
of Correlation 

Up until now, this text has focused on understanding and modeling the dynamics 
of stock returns across time. However, in order to grasp the properties of the full 
joint stochastic process driving markets, we turn our attention to the cross-sec-
tional dynamics across a universe of stocks at any given point in time. Along these 

 15 See Alan G. Hawkes: “Point Spectra of Some Mutually Exciting Point Processes”, in: Journal of the 
Royal Statistical Society. Series B (Methodological) 33 (1971), pp. 438–443. Vassil Chatalbashev/
Yifan Liang/Ari Officer/Nikolaos Trichakis: Exciting Times for Trade Arrivals. MS&E Investment 
Practice Project Report, Stanford University 2007, http://users.iems.northwestern.edu/~armbrust-
er/2007msande444/report1a.pdf (accessed March 2015). Stephen J. Hardiman/Nicolas Bercot/
Jean-Philippe Bouchaud: “Critical Reflexivity in Financial Markets: A Hawkes Process Analysis”, 
in: The European Physical Journal B 86 (2013), pp. 1–9.
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lines, there have been several studies in recent years that focus on exploring the 
structure and dynamics of correlations across the different stocks that comprise the 
market.16 In particular, these models explore correlations during market stress or 
times of bubbles, panic, and crashes. �is is important because in such extreme 
scenarios investors are at the highest risk; their usual models and world views might 
break down, and the results could be devastating as seen in August 2007, October 
2008, or during the so called ‘Flash Crash’ of May 2010.

Some of the author’s contributions in this area have investigated whether there 
are any particular cross-sectional statistical signatures in these periods of market 
panic.17 To get a grasp on the cross-sectional distribution of stock returns at a given 
time point, one can look at moments such as the mean, standard deviation, skew, 
and kurtosis, as a function of time. �e standard deviation of returns is widely re-
ferred to as dispersion. Calculated across 1500 United States stocks and plotted for 
the time period 1993–2009, the dispersion grows relatively big during the time 
periods of panic, in accordance with the discussion above. However, the more strik-
ing discovery comes when the cross-sectional kurtosis is plotted alongside the dis-
persion or together with market returns (figure 4). Even by eye, it is quite clear that 
there is a strong negative correlation between the two quantities, which is in fact 
about -25%. In times of panic, dispersion is high yet excess kurtosis practically 
vanishes. In more normal times, the dispersion is lower but the cross-sectional  
excess kurtosis is typically very high. �e correlation of stocks over time was  
also studied, and can be captured by the variable s which is defined below in Equa-
tion 3. �e empirical results show that during times of panic, correlations rise 
dramatically. 

It is desirable to have a model that can explain all of these findings, namely, to 
preserve the fat-tailed time series properties of stocks, but which gives rise to the 
remarkable reduction in kurtosis and an increase in correlations cross-sectionally, 
which are characteristic of market panic. In such times, dispersion is high yet kur-
tosis is low, which implies that the data are more Gaussian in times of panic. �is 
can be explained partially by the fact that the volatilities of the individual stocks are 

 16 See Tobias Preis/Dror Y. Kenett/H. Eugene Stanley/Dirk Helbing/Eshel Ben-Jacob: “Quantifying 
the Behavior of Stock Correlations under Market Stress”, in: Nature (2012), http://www.nature.
com/srep/2012/121018/srep00752/full/srep00752.html (accessed March 2015). Fabrizio Lillo/
Rosario N. Mantegna: “Variety and volatility in Financial Markets”, in: Physical Review E 62 
(2000), pp. 6126–6134. Didier Sornette: Why Stock Markets Crash: Critical Events in Complex Fi-
nancial Systems, Princeton, NJ: Princeton University Press 2002. Taisai Kaizoji: “Power Laws and 
Market Crashes – Empirical Laws on Bursting Bubbles”, in: Progress of theoretical physics, Supple-
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higher yet more alike in times of panic, which might be one contributing effect. 
However, it appears that the behavior of cross-sectional correlations is what drives 
the statistical signatures of markets in times of panic.

Now, in the full spirit of Haken’s synergetics, a proxy for the collective behavior 
of all stocks in the market is defined as 

sup – sdownsup = _______     Equation 3sup + sdown

where sup is the number of stocks that have positive returns over a given inter- 
val, and sdown is the number of stocks that have negative moves on that same interval 
(for example, over the course of one day). If s = 0, then roughly the same number 

Figure 4: Left: Across the universe of stocks, the standard deviation (called dispersion) and 
the kurtosis are plotted over time. In times of perceived panic, dispersion is high while cross-
sectional kurtosis is very low. �e two quantities show strong negative correlation. Right: 
�e empirical histogram of the quantity s (the ratio of the number of stocks that go up 
minus the number of stocks that go down, over the total number of stocks) is unimodal in 
normal times and bimodal in times of panic.
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of stocks have moved up as have moved down, and the assumption is that the 
stocks had little co-movement and therefore were uncorrelated. If, however,  
all stocks move together, either up or down, the value of s will be +1 or -1, and  
the stocks will have high correlation. By consequence, if s = 0, there is no correla-
tion, and we are in a disordered state. But if s ≠ 0, then there is correlation, and 
things are in an ordered state. Let us now make a leap and connect to some termi-
nology from physics. We shall call s the order parameter. It is a macroscopic pa-
rameter that tells us whether there is order and correlation in a system. In physics, 
particularly in the field of non-equilibrium thermodynamics and synergetics, the 
concept of the order parameter is often used to describe systems that exhibit spon-
taneous self-organization. Examples range from chemical kinetics to laser dynam-
ics, from fluid dynamics to biological systems, from collective behavior in both the 
animal and human world to cloud formation. To illustrate the concept, let us look 
at an example which should be familiar and intuitive to most, namely, magnetism.

In a ferromagnetic system, the total magnetic moment depends on the orienta-
tion of the individual magnetic spins comprising the system. It is proportional to 
the quantity

mup – mdownmup = _________    Equation 4mup + mdown

where mup and mdown denote the number of spins lined up and down respectively. 
Depending on the value of T, the magnetic system will either be in an ordered state 
(all spins lined up) or a disordered state (spins in random directions). To describe 
the dynamics of the magnetic moment m, the framework of synergetics yields the 
following expression, the Langevin equation

dm___ = –am – bm3 + Ft    Equation 5dt

where Ft is thermal noise. �e coefficient a can be written as a = α(T – Tc) where Tc 
is the so-called critical temperature. One can envision these dynamics as motion in 
a potential well V.. If T > Tc, then the only minimum is the trivial one at m = 0 
(spins in random directions). But for T < Tc, two real roots appear, yielding non-
zero values of m. Clearly, m can be positive or negative, depending on which min-
ima are reached by the system (spins all up or all down). �is is referred to as 
symmetry breaking. Due to the noise, the dynamics can also drive m from one 
minimum to the other. Because the value of T determines whether the system is in 
the disordered state (m = 0) or the ordered state (m ≠ 0), it is called the control 
parameter. �e probability distribution of the system in the disordered state will be 
a unimodal one, while the probability distribution of m in the ordered state will be 
bimodal around +m and -m. As T passes from above to below Tc, or vice-versa, 
there is clearly a phase transition: the state of the system is drastically altered. In this 
type of symmetric system, we are dealing with a second order phase transition.
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In the current setting, we make an analogy between the variable s and the mag-
netic moment m. �ere are rather drastic changes in the cross-sectional distribution 
of stocks in times of panic versus more normal market conditions. Histograms of s 
in both periods show that in normal times, s is unimodal, centered around zero, and 
in panic times, a bimodal distribution is observed, consistent with the framework of 
a phase transition leading to self-organization in panic times (see figure 4).

�e dynamics of s are modeled the same as the magnetic moment, namely  

ds___ = –as – bs3 + Ft    Equation 6dt

with a = σc – σ0, where Ft is a Gaussian noise term and σ0 corresponds to the base-
line volatility level of stocks. �is volatility is assumed constant across all instru-
ments and essentially measures the general uncertainty in the environment, in this 
sense acting much as the temperature in the magnetic system. Note that it is the 
feedback effects in the system which induce stock-specific variations in volatility 
over time and can largely explain most of the excess volatility observed in stock 
time series, whereas the parameter σ0 is not driving the stock-specific dynamics, 
but simply describes a ‘global’ level of risk. �e quantity σc would correspond to a 
critical level of uncertainty, below which the market is in a normal phase, and 
above which we have the onset of panic. Much as in the case of ferromagnetism, 
where the control parameter T can be tuned externally above or below the critical 
temperature, in this model the uncertainty level σ0 captures the external environ-
ment. In a sense, it represents the general perception of risk in the public mind.

Following the notions of synergetics, the hypothesis is that financial markets 
appear to exhibit a phase transition from the disordered to the ordered state after 
crossing a critical level of risk perception. Putting the dynamics together, one has 
the multi-timescale feedback process for each stock k, namely, 

dyi
k = σi

k dωi
k     Equation 7

with k = 1… N, and the volatility of each stock k given by equation 2.
�e random variables ωi

k  are drawn from a Gaussian distribution, uncorrelated in 
time, yet among themselves at a given time point i across stocks k, they are corre-
lated with correlation |s|. �e macroscopic order parameter s is therefore just a 
signature of the cross-stock correlations whose dynamic behavior manifests itself in 
the order parameter equation of equation 6.18 

What do we expect to see from this model? We have already seen that across time 
(see for example figure 1), it models many properties of real financial time series very 
well. Across stocks, if σ0 < σc, correlations fluctuate around s = 0, and we expect to 
see a unimodal distribution of S. �e cross-sectional kurtosis should be rather high 

 18 We impose that the coefficients must always be such that |s| ≤ 1.
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since there is no mechanism to cause either stocks or stock volatilities to have any 
co-movement at all. �erefore, at each time point it is as if the cross-sectional re-
turns are drawn from a Gaussian process with stochastic volatility, yielding a fat-
tailed distribution as the superposition. �en, as the market crashes with σ0 > σc, the 
system enters a phase transition. �e order parameter s becomes s ≠ 0 and the system 
enters the ordered phase with high co-movement. Because the random variables ωi

k  
are now correlated across stocks, cross-sectional returns will be more similar and the 
distribution will have lower kurtosis. Additionally, due to the fact that the phase 
transition is triggered by an external shock in volatility, all stocks will tend to have 
higher volatilities and higher cross-sectional dispersion. 

Indeed, simulations of the model confirm these expectations. In figure 5, results 
are shown using the realistic assumption that the baseline volatility is roughly  

Figure 5: Results of a simulated synergetic model that captures the self-organizing behavior 
of the market in times of panic. Top right: A simple simulation of the aggregate market 
return based on a multi-timescale feedback model of the underlying stock returns. Middle 
and bottom right: �e distribution of the order parameter s in normal times and during 
times of panic. Left: Cross-sectional kurtosis and dispersion of the simulated stock returns. 
�e simulation reproduces the qualitative behavior of real markets.
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σ = 20%, and at a certain time a volatility shock σshock = 60% (consistent with levels 
observed in the VIX volatility index19 in late 2008) is applied to the system. �is 
external fear induces a phase transition from the disordered state where correlation 
among stocks is relatively low (centered at around zero) to a highly ordered state 
where the correlations are significantly different from zero, namely |s| ≈ 80%. 
When the shock subsides, the system slowly decays to the disordered state again. 

As expected, the market volatility rises when s is in the ordered state, which cor-
responds to the panic phase. In addition, the cross-sectional dispersion rises during 
the market panic, while the cross-sectional kurtosis drops close to zero. �e correla-
tion between the two quantities in this example is -17%, consistent with empirical 
observations that also showed a strong negative correlation as well. Histograms cor-
responding to the distribution of the order parameter s in the normal market phase 
as well as in the panic phase are in excellent agreement with the empirical observa-
tions of the real market data, namely, unimodal in the normal phase and bimodal 
during panic. 

Other Agent Based Models and  
Network Approaches

So far, we have mainly discussed a modeling approach to the dynamics of financial 
time series based on the mesoscopic level, namely, by way of stochastic equations 
for the evolution of price and volatility. Other approaches involve modeling the 
market participants as independent agents, interacting with each other according 
to certain rules and utilities. Although much of this research does not explicitly 
make reference to synergetics as a field, it is easy to see that the basic notions could 
be cast in such a framework since they have all the necessary ingredients: �ey all 
display local nonlinear interactions that lead to higher order macroscopic dynam-
ics, which in turn mimic many properties of financial observables. One example is 
the body of work concerned with minority games.20 Another interesting class of 
models that does directly utilize tools from synergetics are the heterogeneous agent 
models.21 Here, the market participants (or agents) are assumed to be in two main 
groups: fundamentalists and chartists. Fundamentalists believe that the asset price 
will revert back to its fundamental value; chartists on the other hand will either buy 
or sell depending on factors such as the prevailing price trend. Essentially, mode-
ling the competition and interaction between these two groups of agents, these 
 

 19 Also known as the “fear index”. For explanations and further literature, see http://en.wikipedia.
org/wiki/VIX (accessed March 2015).

 20 See Damien Challet/Matteo Marsili/Yi-Cheng Zhang: Minority Games: Interacting Agents in Fi-
nancial Markets, Oxford: Oxford University Press 2005.

 21 See Cars H. Hommes: “Heterogeneous Agent Models in Economics and Finance”, in: Leigh Tes-
fatsion/Kenneth L. Judd (eds.): Handbook of Computational Economics, Volume 2: Agent-Based 
Computational Economics, Amsterdam: Elsevier Science 2006, pp. 1109–1186.
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models employ ideas from synergetics research and result in informative models of 
price formation that capture many of the realistic features observed in actual finan-
cial markets.

Conclusion

We have reviewed the anomalous features inherent in financial data across time and 
across stocks that reflect the very complex and nonlinear interactions leading to 
price formation in financial markets. �e approach proposes models that intui-
tively capture potential dynamics at play in financial markets. �ese models have 
been verified by testing whether they can reproduce the observed statistical signa-
tures and stylized facts within a variety of market settings, including derivative 
markets such as options.

�e common denominator in the various studies reviewed here is the presence 
of cooperative effects, memory and nonlinear feedback. �erefore, many interest-
ing techniques from the field of statistical physics and synergetics can be applied. 
In particular, we described a model for the joint dynamics of stock price formation 
over time and across stocks, where the onset of market panic was described as a 
self-organized phenomenon. �e correlations take on the role of the order param-
eter of the system. It was shown that in times of panic, there appears to be a phase 
transition from the disordered to the ordered state driven by the volatility and un-
certainty perceived in the market. It has also been pointed out that various other 
bodies of work have been done to model the more direct interactions of market 
participants or agents. Inevitably, cooperative phenomena are key ingredients in 
these works as well.

As a continuously evolving and changing field, finance will certainly continue to 
pose interesting challenges for scientists and practitioners alike for years to come. 
In addition, it seems inevitable that tools from physics, in particular from the fields 
of synergetics and non-equilibrium statistical physics, will continue to make valu-
able contributions to motivating models and help guide our understanding of fi-
nancial markets.
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