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1. Introduction: From Linear to Nonlinear Thinking

The theory of nonlinear complex systems has become a successful prob-
lem solving approach in the natural sciences — from laser physics, quantum.
chaos, and metereology to molecular modeling in chemistry and computer-
assisted simulations of cellular growth in biology. On the other hand, the so-
cial sciences are recognizing that the main problems of mankind are global,
complex, nonlinear, and often random, too. Local changes in the ecological,
economic, or political system can cause a global crisis. Linear thinking and
the belief that the whole is only the sum of its parts are evidently obsolete. One
of the most exciting topics of present scientific and public interest is the idea
that even our mind is governed by the nonlinear dynamics of complex sys-
tems. If this thesis of computational neuroscience is correct, then indeed we
have a powerful mathematical sirategy to handle the interdisciplinary prob-
lems of the natural sciences, social sciences, and the humanities, But one of
the main insights of this book is the following: Handling problems does not
always mean computing and determining the future. In the case of random-
ness, we can understand the dynamical reasons, but there is no chance of
forecasting. Understanding complex dynamics is often more important for
our practical behavior than computing definite solutions, especially when it
is impossible to do so.

‘Whatis thereason behind these successful interdisciplinary applications?
The book shows that the theory of nonlinear complex systems cannot be
reduced to special natural laws of physics, although its mathematical princi-
ples were discovered and at first successfully applied in physics, Thus it is no
kind of traditional “physicalism™ to explain the dynamics of laser, ecological
populations, or our brain by similar structural laws. It is an interdisciplinary
methodology to explain the emergence of certain macroscopic phenomena
via the nonlinear interactions of microscopic elements in complex systerms.
Macroscopic phenomena may be forms of light waves, fluids, clouds, chemi-
cal waves, plants, animals, populations, markets, and cerebral cell assemblies
which are characterized by order parameters. They are not reduced to the mi-
croscopic level of atoms, molecules, cells, ozganisms, etc., of complex systems.
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Actually, they represent properties of real macroscopic phenomena, such as
field potentials, social or economical power, feelings or even thoughts. Who
will deny that feelings and thoughts can change the world? ,

In history the concepts of the social sciences and humanities have often
been influenced by physical theories. In the age of mechanization Thomas
Hobbes described the state as a machine (“Leviathan”) with its citizens as
cog wheels. For Lamettrie the human soul was reduced to the gear drive of
an automaton. Adam Smith explained the mechanism of the market by an
“nvisible” force like Newton’s gravitation. In. classical mechanics causality
is deterministic in the sense of the Newtonian or Hamiltonian equations
of motion. A conservative system is characterized by its reversibility (i.e,
symmetry or invariance) in time and the conservation of energy. Celestial
mechanics and the pendulum without friction are prominent examples. Dis-
sipative systems are irreversible, fike Newton’s force with a friction term, for
instance. .

But, in principle, nature was regarded as 2 huge conservative and deter-
ministic system the causal events of which can be forecast and traced back
for each point of time in the future and past if the imitial state is well known
(“Laplace’s demon”). It was Henri Poincaré who recognized that celestial
mechanics is no completely caloulable clockwork even with the restrictions
of conservation and determinism. The causal interactions of all planets, stars,
and celestial bodies are nonlinear in the sense that their mutuat effects can
lead to chaotic trajectories (e.g., the 3-body problem). Nearly sixty years af-
ter Poincaré’s discovery, A.N. Kolmogorov (1954), V1. Arnold (1963}, and
JX. Moser proved the so-called KAM theorem: Trajectories in the phase
space of classical mechanics are neither completely regular nor completely
irregular, but they depend very sensitively on the chosen initial states. Tiny
finctuations can cause chaotic developments (the “butterfly effect”).

In this century quantum mechanics has become the fundamental theory
of physics [1.1]. In Schrédinger’s wave mechanices the quantum world is be-
lieved to be conservative and linear. In the first quantization classical systems
described by a Hamiltonian function are replaced by quantum systems (for
instance electrons or photons) described by a Hamiltonian operator. These
systems are assumed to be conservative, i.e., non-dissipative and invariant
with respect to time reversal and thus satisfy the conservation law of energy.
States of & quantum system are described by vectors (wave functions) of a
Hilbert space spanned by the eigenvectors of its Hamiltonian operator. The
cansal dynamics of quantum states is determined by a deterministic differ-
ential equation (the Schrédinger equation) which is linear in the sense of the
superposition principle, i.e., solutions of this equation (wave functions or
state vectors) can be superposed like in classical optics. The superposition or
linearity principle of quantum mechanics delivers correlated (“entangled™)
states of combined systems which are highly confirmed by the EPR experi-
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ments (A. Aspect 1981). In an entangled pure quantum state of superposition
an observable can only have indefinite eigenvalues. It follows that the entan-
mwma state of a quantum system and a measuring apparatus can only have
indefinite eigenvalues. But in the laboratory the measuring apparatus shows
definite measurement values. Thus, linear quantum dynamics cannot explain.
the measurement process. .

In the Copenhagen interpretation of Bohr, Heisenberg, et al., the mea-
surement process is explained by the so-called “collapse of the wave-packet”,
i.e., splitting up of the superposition state into two separated states of mea-
surement apparatus and measured quantum systern with definite eigenvalues.
Obviously, we must distinguish the linear dynamics of quantum systems from
mw_o nonlinear act of measurement. This nonlinearity in the world is some-
times explained by the emergence of human consciousness. Bugene Wigner
Qomﬁ suggested that the linearity of Schrddinger’s equation might fail for
conscious observers, and be replaced by some nonlinear procedure accord-
ing to which either one or the other alternative would be resolved out. But
ﬁ:m.m.omm interpretation forces us to believe that the linear guantum super-
positions would be resolved into separated parts only in those corners of
the universe where human or human-like consciousness emerges. In the his-
tory of science anthropic or teleological arguments often showed that there
were weaknesses and failures of explanation in science. Thus, some scientists
ES Roger Penrose, suppose that the linear dynamics of quantum Baowmumnm
is not appropriate to explain cosmic evolution with the emergence of con-
sciousness. He argues that a unified theory of linear quantum mechanics
and aouzbmma general relativity could at least explain the separated states of
macroscopic systems in the world. A measuring apparatus is a macroscopic
system, and the measurement process is irreversible far from thermal equilib-
rium. Thus, an explanation could only succeed in a unified nonlinear theory.
Even the generalization of Schrddinger’s wave mechanics to quantum field
theory is already nonlinear, In quantum field theory, field functions are re-
placed by field operators in the so-called second quantization. The quantum
field equation with a two-particle potential, for instance, contains a nonlin-
ear »amﬂ.noﬁamﬁou&zm to pair creation of elementary particles. In general
the reactions of elementary particles in quantum field theory are essentially
nonlinear phenomena. The interactions of an elementary particle cause its
quantum states to have only a finite duration and thereby to viclate the re-
<¢E;.&:Q n.m. time. Thus even the quantum world itself is neither conservative
nor linear in general, In system theory, complexity means not only nonlin-
earity but a huge number of elements with many degrees of freedom [1.2]. All
Imacroscopic systems like stones or planets, clouds or fluids, plants or ani-
E&m, animal populations or human societies consist of component elements
EG atoms, molecules, cells or organisms. The behaviour of single elements
in complex systems with huge numbers of degrees of freedom can neither
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be forecast nor traced back. The deterministic description of single elements
must be replaced by the evolution of probabilistic distributions.

The second chapter analyzes Complex Systems and the Evolution of Mat-
ter. Since the presocratics it has beena fundamental problem of natural phi-
losophy to discover how order arises from complex, irregular, and chaotic
states of maiter, Heraclitus believed in an ordering force of energy (fogos)
harmonizing irregular interactions and creating order states of matter. Mod-
ern thermodynamics describes the emergence of order by the mathematical
concepts of statistical mechanics. We distinguish two kinds of phase transi-
tion (self-organization) for order states: conservative self-organization means
the phase transition of reversible structures in thermal equilibrium. Typical
examples are the growth of snow crystals or the emergence of magnetisation
in a ferromagnet by annealing the system to a critical value of temperature.
Conservative self-organization mainly creates order structures with low en-

ergy at low temperatures which are described by a Boltzmann distribution.

An application of modern technology is pattern formation in the materials
sciences. Complex systems of the nanoworld and self- constructing materials
are challenges of key technologies in the future.

Dissipative self-organization is the phase transition of irreversible struc-
tures far from thermal equilibrium {1.3. Macroscopic patterns arise from the
complex nonlinear cooperation of microscopic elements when the gnergetic
interaction of the dissipative (“open”) system with its environment reaches
some critical vatue, Philosophically speaking, the stability of the emergent
structures is guaranteed by some balance of nontinearity and dissipation.
Too much nonlinear interaction or dissipation would destroy the structure.
As the conditions of dissipative phase transitions are very general, thereisa
broad variety of interdisciplinary applications. A typical physical example is
the laser. In chemistry, the concentric rings or moving spirals in the Belousov-
Zhabotinski (BZ) reaction arise when specific chemicals are poured together
with a critical value. The competition of the separated ring waves show the
nonlinearity of these phenomena very clearly, because in the case of a su-
perposition principle the ring waves would penetrate each other like optical
waves. ,

The phase transitions of nonlinear dissipative complex systems are ex-
plained by synergetics. In a more gualitative way we may say that old struc-
tures become unstable and break down by changing control parameters. On
the microscopic level the stable modes of the old states are dominated by
unstable modes (Haken’s “slaving principle”) [1.4]). They determine order
parameters which describe the macroscopic structure and patterns of sys-
terns. There are different final patterns of phase transitions corresponding
to different attractors. Different attractors may be pictured as a stream, the
velocity of which is accelerated step by step. At the first level 2 homogeneons
state of equilibrium is shown (“fixed point”). At a higher level of velocity
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the bifurcation of two or more vortices can be observed corresponding to
periodic and quasi-periodic attractors. Finally the order decays into deter-
ministic chaos as a fractal attractor of complex systerns. Philosophically
.H want to underline that in synergetics the microscopic description of Emﬁmm
is distinguished from the macroscopic order states. Thus the synergetic con-
cept of order reminds me of Heraclitus” “logos” or Aristotle’s “form” which
produces the order states of nature in a transformative process of matter.
But, of course, in antiquity a mathematical description was excladed.

In a more mathematical way, the microscopic view of a complex system is
described by the evolution equation of a state vector where each component
aowmm% on space and time and where the components may denote the ve-
Tocity components of a fluid, its femperature field, or in the case of chemical
reactions, concentrations of chemicals. The slaving principle of synergetics
allows us to eliminate the degrees of freedom which refer to the stable modes.
In the leading approximation the evolution equation can be transformed into
a specific form for the nonlinearity which applies to those systems where a
competition between patterns occurs. The amplitudes of the Jeading terms
of unstable modes are called order parameters. Their evolution equation
describes the emergence of macroscopic patterns. The final patterns (“at-
tractors”) are reached by a transition which can be understood as a kind of
symumetry breaking [1.5}. Philosophically speaking, the evolution of matter
is caused by symmetry breaking, which was earlier mentioned by Heraclitus.

Understanding complex systems and nonlinear dynamics in nature
seems to yield appropriate models for the evolution of matter. But how can
we find correct models in practice? Physicists, chemists, biologists, or physi-
cians start with data mining in an unknown field of research. They only geta
finite series of measured data corresponding to time dependent events of an
unknown dynamical system. From the time series of these data, they must
reconstruct the behavior of the system in order to guess the type of its dy-
pamical equation. Therefore, time series analysis is a challenge to modern
research in chaos theory and nonlinear dynamics.

The third chapter analyzes Complex Systems and the Evolution of Life. In
the history of science and philosophy, people believed in a sharp difference
between “dead” and “living” matter. Aristotle interpreted life as a power
of self-organization (entelechy) driving the growth of plants and animals to
their final form. A lving system is able to move by itself, while a dead system
can only be moved from outside. Life was explained by teleclogy, i.e.,, by non-

-causal (“vital”) forces aiming at some goals in nature. In the 18th century

Kant mros.&‘ﬁwﬁ self-orpanization of living organisms cannot be explained
by a mechanical system of Newtonian physics. In a famous quotation he

_said that the Newton for explaining a blade of grass is still lacking. In the

19th century the second law of thermodynamics describes the irreversible
movernent of closed systems toward a state of maximal entropy or disorder.
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But how can one explain the emergence of order in Darwin’s evolution of
life? Boltzmann stressed that living organisms are open dissipative systems
in exchange with their environment which do not violate the second law of
closed systems, But nevertheless in the statistical interpretation from Boltz-
mann to Monod the emergence of life can only be a contingent event, a local
cosmic fluctuation “at the boundary of nniverse”.

In the framework of complex systems the emergence of life is not contin-
gent, but necessary and Jawful in the sense of dissipative self-organization.
Only the conditions for the emergence of life (for instance on the planet
Farth) may be contingent in the universe. In general, biology distinguishes
ontogenesis (the growth of organisms) from phylogenesis (the evolution of
species). In any case we have complex dissipative systems the development of
which can be explained by the evolution of {macroscopic) order parameters
caused by nonlinear (microscopic) interactions of molecules, cells, etc., in
phase transitions far from thermal equilibrium. Forms of biological systems
(plants, animals, etc.) are described by order parameters. Axistotle’s teleclogy
of goals in natureis interpreted in terms of attractors in phase transitions. But
no special “vital” or “teleological” forces are necessary. Philosophically, the
emergence of life can be explained in the framework of nonlinear causality
and dissipative self-organization, although it may be described in a teleolog-
ical language for heuristic reasons.

I remind the reader that the prebiological evolution of biomolecules was
analyzed and simulated by Manfred Eigen et al. Spencer’s idea that the evo-
lution of life is characterized by increasing complexity can be made precise
in the context of dissipative self-organization. It is well known that Turing
analyzed a mathematical model of organisms represented as complex cellu-
lar systems. Gerisch, Meinhardt, et al. described the growth of an organism
(e.g., a slime mould) by evolution equations for the aggregation of cells. The
nonlinear interactions of amebas cause the emergence of a macroscopic or-
ganism like a slime mould when some critical value of cellular nutrition in the
environment is reached. The evolution of the order parameter corresponds
to the aggregation forms during the phase transition of the macroscopic
organism. The mature multiceliular body can be interpreted as the “goal”
or (better) “attractor” of organic growth. Multiceliular bodies, like genetic
systems, nervous systems, immune systems, and ecosystems, are examples
of complex dynamical systems, which are composed of a network of many
interacting elements. S. Kauffian suggested studying random Boolean net-
works that could be programmed in a computer. In computer experiments,
he found a hierarchy of dynamical behavior with fixed points and cycles of
increasing complexity, which can be observed in real cells.

Even the ecological growth of biological populations may be simulated
using the concepts of synergetics. Ecological systems are complex dissipative
systems of plants or animals with mutual nonlinear metabolic interactions

1. Introduction: From Linear to Nonlinear Thinking 7

with each other and with their environment. The symbiosis of two popula-
tions with their source of nutrition can be described by three coupled dif-
ferential equations which were already used by Bdward Lorenz to describe
the development of weather in meteorology. In the 19th century the Ital-
ian mathematicians Lotka und Volterra described the development of two
populations in ecological competition. The nonlinear interactions of the two
complex populations are determined by two coupled differential equations
of prey and predator species. The evolution of the coupled systems have
stationary points of equilibrium. The attractors of evolution are periodic
oscillations (limit cycles).

The theory of complex systems allows us to analyze the nonlinear causal-
ity of ecological systems in nature, Since the industrial revoluiion human
society has become more and more involved in the ecological cycles of na-
ture. But the complex balance of natural equilibria is highly endangered by
the linear mode of traditional industrial production. People assumed that
nature contains endless sources of energy, water, air, etc., which can be used
without disturbing the natural balance. Industry produces an endless flood
of goods without considering their synergetic effects like the ozone hole or
waste utilization. The evolution of life is transformed into the evolution of
human society.

Perhaps the most speculative interdisciplinary application of complex
systems is discussed in the fourth chapter, Complex Systems and the Evolution
of Mind-Brain. In the history of philosophy and science there have been many
different supgestions for solutions to the mind-body problem. Materialistic
philosophers like Democritus, Lamettrie, et al,, proposed to reduce mind
to atomic interactions. Idealists like Plato, Penrose, et al. emphasized that
mind is completely independent of matter and brain. For Descartes, Eccles,
et al. mind and matter are separate substances interacting with each other.
Leibniz believed in a metaphysical parailelism of mind and matter because
they cannot interact physically. According to Leibniz mind and matter are
supposed to exist in “pre-established harmony” like two synchronized clocks.
Modern philosophers of mind like Searle defend a kind of evolutionary
naturalism. Searle arpues that mind is characterized by intentional mental
states which are intrinsic features of the human brain’s biochemistry and
which therefore cannot be simulated by computers.

But the theory of complex systems cannot be reduced to these more
or less one-sided positions. The complex systern approach is an interdisci-
plinary methodology to deal with nonlinear complex systems like the cellular
organ known as the brain. The emergence of mental states (for instance pat-
tern recognition, feelings, thoughts) is explained by the evolution of (macro-
scopic) order parameters of cerebral assemblies which are caused by nonlin-
ear (microscopic) interactions of neural cells in learning strategies far from
thermal equilibrium. Ceil assemblies with mental states are interpreted as
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attractors (fixed points, periodic, quasi-periodic, or chaotic) of phase tran-

sitions.

If the brain is regarded as a complex system of neural cells, then its
dynamics is assumed to be described by the nonlinear mathematics of neu-
ral networks. Pattern recognition, for instance, is interpreted as a kind of
phase transition by analogy with the evolution equations which are used
for pattern emergence in physics, chemistry, and biology. Philosophically, we
get an interdisciplinary research program that should allow us to explain
peurocomputational self-organization as a natural consequence of physical,
chemical, and neurobiological evolution by common principles. As in the
case of pattern formation, a specific pattern of recognition (for instance a
prototype face) is described by order parameters to which a specific set of
features belongs. Once some of the features which belong to the order pa-
rameter are given (for instance a part of a face), the order parameter will
complement these with the other features so that the whole system acts asan
associative memory (for instance the reconstruction of a stored prototype
face from an initially given part of that face). According to Haken's slav-
ing principle the features of a recognized pattern correspond to the enslaved
subsystems during pattern formation.

But what about the emergence of conscicusness, self-consciousness, and
intentionality? In synergetics we have to distinguish between external and
internal states of the brain. In external states of perception and recognition,
order parameters correspond to neural cell assemblies representing patterns
of the external world. Internal states of the brain are nothing other than
self-referential states, i.c., mental states referring to mental states and not
to external states of the world. In the traditional language of philosophy
we say that humans are able to reflect on themselves (self-reflection) and to
refer external situations of the world to their own internal state of feeling
and intentions (intentionality). In recent neurobiological inquiries, scientists
speculate that the emergence of consciousness and self-consciousness de-
pends on a critical value of the production rate for “meta-cell-assemblies”,
i.e., cell-assemblies representing cell-assemblies which again represent cell-
assemblies, etc., as neural realization of self-refiection. But this hypothesis
(if successful) could only explain the structure of emergent features like con-
sclousness. Of course, mathematical evolution equations of cell assemblies
do not enable us to feel like our neighbour. In this sense - this is the negative
message — science is blind. But otherwise - this is the positive message - per-
sonal subjectivity is saved: Calculations and computer-assisted simulations
of nonlinear dynamics are limited in principle.

Axyway, the complex system approach solves an old Emﬁmﬁgmsmﬂ puzzle
which was described by Leibaiz in the following picture: If we imagine the
brain as a big machine which we may enter like the internal machinery of
a mill, we shall only find its single parts like the cog wheels of the mill and
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never the mind, not to mention the human soul. Of course, on the microscopic
level we can only describe the development of neurons as cerebral parts of
the brain. But, on the macroscopic level, the nonlinear interactions in the
complex neural system cause the emergence of cell assemblies referring to
order parameters which cannot be identified with the states of mEmum cerebral
ceils. The whole is not the sum of its parts.

It is obvious that the complex system approach delivers solutions of the
mind-body problem which are beyond the traditional philosophical answers
of idealism, materialism, physicalism, dualism, interactionism, etc. Concern-
ing the distinction between so-called natural and artificial intelligence, it is-
important to see that the principles of nonlinear complex systems do not de-
pend on the biochemistry of the human brain. The human brain is a “natural”
model of these principles in the sense that the cerebral complex system is a
product of physical and biclogical evolution. But other (“artificial™} models
produced by human technology are possible, although there will be technical
and ethical limits to their redlization.

In Chap. 5 we discuss Complex Systems and the Evolution of Computabil-
ity. Universal Turing machines and algorithmic complexity are the tradi-
tional concepts of computability. Are there limitations to the analogies of
computers with human mind and brain by Godel’s and Turing’s results of
incompleteness and undecidability? How can the human brain be under-
stood as both an information processing machine and a knowledge-based
system? John von Neumann's concept of celluar antomata refined the idea
of self-organizing cellular systems. Recent computer experiments by Stephen
Wolfram have shown that all kinds of noniinear dynamics, from fixed point
attractors and oscillating behavior to chaos, can be simmlated by cellular
automata. Even randomness can be generated by appropriate cellular au-
tomata, though their local rules of cellular interaction may be very simple
and well-known. Celluiar automata deliver digital approximations of com-
plex dynamical systems that are determined by continuous differential equa-
tions.

Computational dynamics open new avenues for Complex Systems and
the Evolution of Artificial Life and Intelligence (Chap. 6). Artificial life, as
well as neural networks have their roots in the universal method of cellu-
lar automata. Sclf-organization and learning are main features of meural
networks modeling intelligent systems. In synergetic computers, the order
parameter equations allow a new kind of (non-Hebbian) learning, namely a
strategy to minimize the number of synapses. In contrast to neurocomput-
ers of the spin-glass type (for instance Hopfield systems), the neurons ate
not threshoid elements but.rather perform simple algebraic manipulations
like multiplication and addition. Beside deterministic homogeneous Hop-
field networks there are so-called Boltzmann machines with a stochastic net-
work architecture of non-deterministic processor elements and a distributed
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knowledge representation which is described mathematically by an energy.
function. While Hopfield systems use a Hebbian learning strategy, Boltz-
mann machines favour a backpropagation strategy (Widrow-Hoff rule) with
hidden neurons in 2 many-layered network.

In general it is the aim of a learning algorithm to diminish the informa-
tion-theoretic measure of the discrepancy between the brain’s internal model
of the world and the real environment via self-organization. The recent re-
vival of interest in the field of neural petworks is mainly inspired by the
successful technical applications of statistical mechanics and nonlinear dy-
namics to solid state physics, spin glass physics, chemical parailel computers,
optical parallel computers, and ~ in the case of synergetic computers — to
laser systems. Other reasons are the recent development of computing re-
sources and the level of technology which make a computational treatment
of nonlinear systems more and more feasible. Philosophically, traditional
topics of epistemology like perception, imagination, and recognition may be
discussed in the interdisciplinary framework of complex systems.

In electrical engineering, information theory, and computer science,
the concept of cellular neural networks (CNN) is becoming an influential
paradigm of complexity research, which has been realized in information
and chip technology [1.6). Analogic Cellular Computers are the technical
response to the sensor revolution, mimicking the anatomy and physiology
of sensory and processing organs. A CNN is a nonlinear analog circuit that
processes signals in real time. Its architecture dates back to J. von Neumann’s
earlier paradigm of Cellular Automata (CA). Unlike conventional celtular
automata, CNN host processors accept and generate analog signals in con-
tinuous time with real numbers as interaction values. The CNN universal
chip is a technical realization of the CNN Universal Machine (CNN-UM),
analogous to the Universal Turing machine of digital computers. It is a mile-
stone in information technology because it is the first fully programmable,
industrial-sized, brain-like, stored-program dynamic array computer. Fur-
ther on, appropriate CNNs can simulate all kinds of pattern formation and
pattern recognition, which have been analyzed in synergetics in the theory of
nonlinear dynamics. Two great advantages of CNNG are their rigorous math-
ematical analysis and their technical realization. The dynamic complexity of
cellular automata and their corresponding nonlinear dynamic systems can be
characterized by a precise complexity index. An immense increase of com-
puting speed, combined with significantly less electrical power in the first
CNN chips, has led to the current intensive research activities on CNN since
Chua and Yang's proposal in 1988.

An important application of the complex system approach is neuro-
bionics and medicine. The human brain is not only a cerebral computer
as a product of natural evolution, but a central organ of our body which
needs medical treatment, healing, and curing. Neurosurgery, for instance, is
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a medical discipline responsible for maintaining the health of the biological
medium of the human mind, The future well-being of the brain-mind entity
is an essential aim of neurobionics. In recent years new diagnostic procedures
and technical facilities for transplantation have been iniroduced which are
based on new insights into the brain from complex dynamical systems. In
this context a change of clinical treatment is unavoidable, Neural and psychic
forms of illness can be interpreted as complex states in a nonlinear system of
high sensitivity. Even medical treatments must consider the high sensitivity
of this complex organ. Another mors speculative aspect of the new technol-
ogy is cyberspace. Perception, feeling, intuition, and fantasy as products of

_artificial neural networks? Virtual reality has become a keyword in moden

philosophy of culture.

After moving through matter, life, mind-brain, and artificial intelligence,
the book finishes in a Hegelian grand synthesis with the seventh chapter,
Complex Systems and the Evokution of Human Society. In social sciences one
usually distinguishes strictly between biological evolution and the history
of human society. The reason is that the development of nations, markets,
and cultures is assumed to be guided by the intentional behavior of humans, .
i.e., human decisions based on intentions, values, eic. From a microscopic
viewpoint we may, of course, observe single individuals with their intentions,
beliefs, etc. But from a macroscopic view the development of nations, mar-
kets, and cultures is not only the sum of its parts. Mono-causality in politics
and history is, as we all know, a false and dangerous way of linear thinking.
Synergetics seems to be a successtul strategy to deal with complex systems
even in the humanities. Obviously it is not necessary to reduce cultural his-
tory to biological evolution in order to apply synergetics interdisciplinarily.
Contrary to any reductionistic kind of naturalism and physicalism we rec-
ognize the characteristic intentional features of human societies, Thus the
complex system approach may be a method of bridging the gap between
the natural sciences and the humanities that was criticized in Snow’s famous
“two cultures”. ,

In the framework of complex systems the behaviour of human popula-
tions is explained by the evolution of (macroscopic) order parameters which
is caused by nonlinear (microscopic) interactions of humans or human sub-
groups (states, institutions, ete.). Social or economic order is interpreted by
attractors of phase transitions. Allen et al. analyze the growth of urban re-
gions. From a microscopic point of view the svolution of populationsin single
urban regions is mathematically described by coupled differential equations
with terms and functions referring to the capacity, economic production,
etc., of each region. The macroscopic development of the whole system is
illustrated by computer-assisted graphics with changing centers of indus-
trialization, recreation, etc., caused by nonlinear interactions of individual
urban regions (for instance advantages and disadvantages of far and near
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connections of transport, communication, etc.}. An essential result of the
synergetic model is that urban development cannot be explained by the free
will of single persons. Although people of local regions are acting with their
individual intentions, plans, etc., the tendency of the global development is
the result of nonlinear interactions.

Another example of the interdisciplinary application of synergetics is
Weidlich’s model of migration. He distinguishes the micro-level of individual
decisions and the macro-level of dynamical collective processes in a society.
The probabilistic macro-processes with stochastic fluctuations are described
by the master equation of human socioconfigurations. Each component ofa
socioconfiguration refers to a subpopulation with a characteristic vector of
behavior. The macroscopic development of migration in a society could be
illustrated by computer-assisted graphics with chan ging centers of mixtures,
ghettos, wandering, and chaos which are caused by nonlinear interactions
of social subpopulations. The differences between human and non-human
complex systems are obvious in this model. On the microscopic level human
migration is intentional (i.e., guided by considerations of utility) and nonlin-
ear (i.e., dependent on individual and collective interactions). A main result
of synergetics is again that the effects of national and international migration
cannot be explained by the free will of single persons. 1 think migration is
a very dramatic topic today, and demonstrates how dangerous linear and
mono-causal thinking may be. It is not sufficient to have good intentions
without considering the nonlinear effects of single decisions, Linear think-
ing and acting may provoke global chaos, although we locally act with the
best intentions.

Tt is a pity to say that in economics linear models are still dominant.
From a qualitative point of view, Adam Smith’s model of a free market can
already be explained by self-organization. Smith underlined that the good or
bad intentions of individuals are not essential. In contrast to a centralized
economical system, the equitibrium of supply and demand is not directed
by a program-controlled central processor, but is the effect of an “invisi-
ble hand” (Smith), i.e., nothing but the nonlinear interaction of consumers
and producers. The recent interest of economists in nonlinear dissipative
systems is inspired by the growth of knowledge-based high-tech industries
with positive feedback (i.e., increasing production depending on increasing
know-how, such as electronics, computer industries, ete.) in contrast to the
old industries with negative feedback (i.e., decreasing production depending
limited resources like coal or steel).

In a dramatic step, the complex systems approach has been expanded
from neural networks to include global technical information networks like
the World Wide Web. The information flow is accomplished through infor-
mation packets with source and destination addresses. The dynamic of the
Internet has essential analogies with CAs and CINNs. Computational and
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information networks have become technical superorganisms, evolving in a
quasi-evolutionary process. The information flood in a more or less chaotic
Internet is a challenge for intelligent information retrieval. We could use the
analogies of the self-organizing and learning features of a living brain to find
heuristic devices for managing the information flood of the Internet. But
the complexity of global networking isn’t confined to the Internet. Below the
complexity of a PC, cheap, low power, and smart chip devices are distributed
throughout the intelligent environments of our everyday world. Ubiquitous
computing is a challenge of global networking by wireless media access,
wide-bandwidth range, real-time capabilities for multimedia over standard
networks, and data packet routing. Not only millions of PCs, but also billions
of smart devices are interacting via the Internet. The overwhelming flow of
data and information forces us to operate at the edge of chaos.

In general, economic information processes are very complex and de-
mand nonlinear dissipative models, Recall the different attractors from eco-
nomic cycles to financial chaos which can only be explained as synergetic
effects by nonlinear interactions of consumers and producers, fiscal policy,
stock market, unemployment, etc. Even in management possible complex
models are discussed in order to support creativity and innovation by nonlin-
ear cooperation at all levels of management and production. But experience
shows that the rationality of human decision making is bounded. Human
cognitive capabilities are overwhelmed by the complexity and randomness of
the nonlinear systems they are forced to manage. The concept of bounded ra-
tionality, first introduced by Herbert Simon, was a reaction to the limitations
of human knowledge, information, and time.

Evidently, there are some successful strategies to handle nonlinear com-
plex systemns. We shall discuss examples of applications in quantum physics,
hydrodynamics, chemistry, and biology, as well as economics, sociology, neu-
rology, and AL What is the reason behind the successful applications in the
natural sciences and humanities? The complex system approach is not re-
duced to special natural laws of physics, although its mathematical principles
were discovered and at first successfully applied in physics (for instance to
the laser). Thus, it is an interdisciplinary methodology to explain the emer-
gence of certain macroscopic phenomena via the nonlinear interactions of
microscopic elements in complex systems, Macroscopic phenomena may be
forms of light waves, fluids, clouds, chemical waves, biomolecules, plants,
animals, populations, markets, neural cell assemblies, traffic congestions in
street networks or the Internet, which are characterized by order parameters
(Table 1.1). Philosophically, it is important to see that order parameters are
not reduced to the microscopic level of atoms, molecules, cells, organisims,
etc., of complex systems. In some cases they are measurable quantities (for
instance the field potential of a laser). In other cases they are gualitative
properties (for instance geometrical forms of patterns). Nevertheless, order



14 1. Introduction: From Lincar to Nonlinear Thinking - 1. Introduction: From Linear to Nonlinear Thinking 15

parameters are not mere theoretical concepts of mathematics without any
— % =1 . . H
plm 8 P 5%ie m 8i8181ST |2 |5 o & reference to reality. Actually they represent properties .oH. real macroscopic
= .,m EiEal |e HPEEEEEIE HEE B |5 |88 |28 phenomena, such as field potentials, social or economic power, feelings or
g £ m 5lg X m k- m gla 8 m m sle g |E mm S8 even thoughts. Who will deny that feelings and thoughts can change the
ol = B - . & -
& m .m ~|E|E 2|Egig o ] o ,m BlEE ,m ..m g m e world? If we can understand their nonlinear dynamics, it could even become
EoigSisle S g2 E E mEIREE > |58 |88 |28 possible to implement them in chips, such as CINNs.
SIES|EBIEE 3 £ R|B-218 TI8I8|5 5 g | EE |E8 Thus, the complex systems approach is not a metaphysical process on-
» - B ke © . — — Po) . . e . . e
m g% g iy A B .m ] m..m £|5 E £ 5|3 EE (B g tology. Synergetic principles (among others) provide a heuristic scheme to
olé b} m = s R m. 5 25 gs (8 |B g construct Emaam of nonlinear complex systems in the natural sciences m«ﬁ
e e o= 24® the humanities. If these models can be mathematized and their properties
w wantified, then we get empirical models which may or may not fit the data.
g o B a8 4 oy D T D B ;
w T 18 {28l. . m §% iuB .mm 28 g .m.m The slaving principle shows another advantage. As it diminishes the high
o =] B = " ' . . .
0y g E |8 mw g .m m 2 2 ,m m, g8 _ .m m 8% m,m mu.m m number of degrees of freedom in & complex system, synergetics is not only
A m g 1E|® 5 |E8 .m m SRR m g EE &TIET &% heuristic, mathematical, empirical and testabie, but economical too. Namely,
M .m. ,m .m. .m_ % 1§ m g m, 8 2 m.”m B EIE K ,m mcm = m ma.m it satisfies the famous principle of Ockham’s razor which ﬁmm.m us to cut away
&5 2 |z < & [E8i57|23 EEH EEHIRE g 2.8°F 8 superfluous entities, Further on, nonlinear models may be implemented in
Rlg 13 =8 |2 |B2E]E |[®#°1Z|e2 |8E| g S m 588 nonlinear computer chips of high speed and miniaturized size. We can also
~ m . 5|° Sl T prove basic principles of computational dynamics. But, because of chaos
g - and randomness, understanding computational dynamics does not mean
m, 8 |, 25 | .8 & predicting and determining the future in all its details. The analysis of com-
A =gl |8 18 |3 (5| 18® £ \w.., m m a m putational systems allows us to gain experience with nonlinear dynamics, as
- |= = = Ryl “w . ] 13 - I3 - 3 L3 .
21618 |BEEE B |3 |5 1328l EslBels & well as insights into and feelings about what is going on in the real world.
mmm gz 12 1= E |28/8E 5 g2 5|8 K nslg £ \
: g IE|E |¥ ,m..m ..m. g2 |8 |8 E SR 5 g 5(A 4 But, as life is complex and random, we have to live it in order to experience
. 5|3 g |8 88 i~ A8 = it
} a (= g g~ = ] - . .
1 bm. ° In this sense, our approach suggests that physical, social, and mental
; E — L : : . .
: g & realities are nonlinear, complex, and computational. This essential result of
n & . .
5 @ E lw |u & Sg® 8 a new epistemology has severe consequences for our behavior. As we un-
5 : B laalgl a8 248 53 W epistentology b quences for our :
j g Lo Z [EEi8|2|8|8 @ £S5 g derlined, linear thinking may be dangerous in a nonlinear complex reality.
H Eisie 28|, i5sl |2 (5212|6812 (8 | |2285E 8
. FIE|E |=228 £ EIE R ER b e g |8 R85E° Recall, as one example, the demand for a well-balanced complex system
2 2 |2 m m & m £ |8 :m £ g 8 m. m. g g |8 .m T z of na.omomw and economics. Our ﬁg.amoww:m m.s.a wmwogwommﬁm must learn to
g in g 5 |E =g |1™E 5 g5 S E consider humans as complex nonlinear entities of mind and body. Linear
: ) & g | @ = 2 thinking may fail to yield a successful diagnosis. Local, isolated, and “lin-
.ﬂmw ear” therapies of medical treatment may cause negative synergetic effects.
: B @ 8 In politics and history, we must remember that mono-caunsality may lead to
{ £ £ |8 Lo - . .
m M n |B m Ww . oS m . 8 2 Ww.w 5 8 aom.ﬁmﬂwau intolerance, mma fanaticism. As the ecological, €COnOmIC, and
3 4 m 3 = |8 2 g R |w g |5 2 8% mnm political problems of mankind have become global, complex, nonlinear, and
L =0l |3 |8 3 |8 i3 m 2 |3 g m 5 g @ random, the traditional concept of individual responsibility is questionable.
HES — Qo - . . .
a o m 5 |& BIE ° E ° - We need new models of collective behavior depending on the different de-
. 2 .
1. = ot
=

i
;
!

grees of our individual faculties and insights. In short: The complex system
approach demands new consequences in epistemology and ethics. Finally,
! it offers a chance to handle chaos and randomness in a nonlinear complex
' world and utilize the creative possibilities of synergetic effects.
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8. Epilogue on Future, Science, and Ethics

The principles of complex systems suggest that the physical, social, and men-
tal world is nonlinear, complex, random. This essential result of epistemology
has important consequences for our present and future behavior. Science and
technology will have a crucial impact on future developments. Thus this book
finishes with an outlook on future, science, and ethics in a nonlinear, com-
plex, and random world. What can we know about its future? What should
we do?

8.1 Complexity, Forecasts, and the Future

In ancient times the ability to predict the future seemed to be a mysterious
power of prophets, priests and astrologists. In the oracle of Delphi, for ex-
ample, the seer Pythia (6th century B.C.) revealed the destiny of kings and
heroes in a state of trance (Fig. 8.1} In modern times people came to believe
in the unbounded capabilities of Laplace’s demon: Forecasting in a linear
and conservative world without friction and irreversibility would be perfect.

" We only need to know the exact initial conditions and equations of motion

of a process in order to predict the future events by solving the equations for
future times. Philosophers of science have tried to analyze the logical con-
ditions of forecasting in the natural and social sciences [8.1]. Belief in man’s
forecasting power has been shaken over the course of this century by several
scientific developments. Quantum theory teaches us that, in general, we can
only make predictions in terms of probabilities (cf. Sect. 2.3). A wide class
of phenomena is governed by deterministic chaos: Although their motions
obey the laws of Newtonian physics, their trajectories depend sensitively on
their initial conditions and thereby exclude predictions in the long run. In
dissipative systems, such as the fluid layer of a Bénard experiment (Fig. 2.20),
the emergence of order depends on microscopically small initial fluctuations.
A tiny event, such as the stroke of a butterfly’s wing, can, in principle, in-
fluence the global dynamics of weather. In chaotic systems, the prediction
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Fig.8.1. Aigeas, king of Athens, asking the Oracle at Delphi about his future (Greek
bowl: 440430 B.C.)

of future events is restricted, because the information m.os from past mo MMI
ture decreases: The Kolmogorov-Sinai entropy has a finite value. But, M
case of random and noise, every no:ﬂmcon.om past and ?Enm.ann.ﬁm mmw.
the Kolmogorov-Sinai entropy is running to infinity: No prediction ma poss )
ble. Obviously, the randomness of human fate was the nwm:gmm ) EMMMWM_
prophets, priests, and astrologists. In Chap. 7 we have Hnmwﬁ t wﬁ pa s
and relationships in economics, gmwummm_.msa society momﬁmcw.umw c mw.mmw -
matically. Going beyond the natural sciences, people’s actions, EH.M : .w.,
observed in the social sciences, can and do influence ?ER .@..aﬁm. om@
cast can, therefore, become & moﬁ.mEmEmm or moﬁ.mom@mzum prophecy M at
itself changes established patterns or Bﬂmﬂomwwwﬁm of the past. Is forecasting
i an staring into a crystal ball! .
noﬁwmﬂm Mwwmwﬁws our aa%ﬂoﬁm are related to ?Emm events and require w.owm-
casts of circurnstances surrounding that future environment, This 1s true 0T
personal decisions, such as when and whom to marry ot ﬂ.&g and .woq.,q fo
invest savings, and for complex decisions affecting an entire .Oammsﬁwﬁo?
firm, society, or the global state of the earth. F recent wmma.m.pmnnmmmm. ern-
phasis has been placed on improving ».oﬁoﬁ..:ﬂm and %.oﬁou ma Em in
economy and ecology, management and politics. FEeonomic shocks, mnowow.
ical catastrophes, political disasters, but also chances such as new markets,

new technological trends, and new social structures, should no longer w,m .
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random and fateful events sent by the gods. People want to be prepared and
have thus developed a variety of guantitative forecasting methods for dif-
ferent situations, e.g., in business and management. From a methodological
point of view, every quantitative forecasting instrument can be character-
ized by a particular predictability horizon which limits its reliable applica-
tion. Let us have a look at the strengths and weakness of some forecasting
instruments.

The most common quantitative methods of forecasting are the time-
series procedures [8.2]. They assume that some pattern in 2 data series is
recurring over time and can be extrapolated to future periods. Thus, a time-
series procedure may be appropriate for forecasting environmental factors
such as the level of employment or the pattern of weekly supermarket sales
where individual decisions have little impact. But time-series methods cannot
explain the causes behind the data patterns. In historical times, the method
was used by the Babylonian astronomers who extrapolated the data pattern
of moonrise into the future without any explanation based on models of ptan-
etary motion. In the 18th century physicists knew little about the causes of
sunspots. Butin the observations of sunspots a patiern of frequency and mag-
nitude was found and predictions were possible by its continuation through
time-series analysis. In business and economics, there are various underlying
patterns in data series. A horizontal pattern exists where there is no trend in
the data {e.g., products with stable sales). A seasonal pattern exists when a se-
ries fluctuates according to some seasonal factor such as products whose sale
depends on the weather. A cyclic pattern may not repeat itself at constant in-
tervals of time, e.g., the price of metals or the gross national product. A trend
pattern exists when there is a general increase or decrease In the value of the
variable over time. When an underlying pattern exists in a data series, that
pattern must be distinguished from randommness by averaging and weight-
ing (“smoothing™) the past data values. Mathematically, a linear smoothing
method can be used effectively with data that exhibit a trend pattern. But
smoothing methods make no attempt to identify individual components of
the basic underlying patterns. There may be subpatterns of trend, cycle, and
seasonal factors, which must be separated and decomposed in analyzing the
overall pattern of the data series. .

While in time-series procedures some data paitern from the past is merely
extrapolated to the future, an explanatory model assumes 2 relationship be-
tween the (“dependent™)} variable y that we want to forecast and another
(“independent™) variable x. For example, the dependent variable y is the
cost of production per unit, and the independent variable x determining the
cost of production is the number of units produced. In this case, we can
model the relationship in a two-dimensional coordinate system of y and x
and draw a straight line that in some sense will give the best linear approx-
imation of the relationship. Regression analysis uses the method of least
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squares in order to minimize the distance between the actual observations y
and the corresponding points § on the straight line of linear approximation.
Obviously, there are many situations in which this is not a valid approach.
An example is the forecast of monthly sales varying nonlinearily according
to the seasons of the year. Furthermore, every manager knows that sales are
not infiuenced by time alone, but by a variety of other factors such as the
gross national product, prices, competitors, production costs, taxes, etc. The
Linear interaction of two factors only is a simplification in economy similar
to the two-body problems in the linear and conservative world of classical
physics. )
But, of course, a complex model that is more accurate requires a larger
amount of effort, greater-expertise and more computational time. In many
decision-making situations more than one variable can be used to explain or
forecast a certain dependent variable. An ordinary example is a marketing
manager who wants to forecast corporate sales for the coming year and to
better understand the factors that influence them. Since he has more than
one independent variable, his analysis is known as multiple regression anal-
ysis. Nevertheless, the dependent variable he wishes to forecast is expressed
as a linear function of the independent variables. The computation of the
coefficients in the regression equation is based on the use of a sample of
past observations. Consequently the reliability of forecasts based on that
regression equation depends largely on the specific sample of observations
that were used. Therefore degrees of reliability must be measured by tests
of statistical significance. While multiple regression involves a single equa-
tion, econometric models can include any number of simultaneous multiple
regression equations [8.3]. In the case of linear equations, the mathemati-
cal methods of solution are based on linear algebra and linear optimization
methods (e.g., simplex method). In spite of their linearity, the economet-
ric models may be highly complicated with many variables which can only
be mastered by computer programs and machines. The solution strategy of
nonlinear programming in economics often decomposes complex problems
into subproblems which can be approximately treated as linear.

An implicit assumption in using these methods is that the model best
fitting the available historical data will also be the best model to predict the
future beyond these data. But this assumption does not hold true for the
great majority of real-world situations. Furthermore, most data series used
in economics and business are short, measurement errors abound, and con-
trolled experimentation is not possible. It is therefore necessary to understand
how various forecasting methods succeed when changes in the established
patterns of the past take place. The predictions are different at the vari-
ous forecasting horizons characterizing each method. Obviously, there is no
unique method that can forecast best for all series and forecasting horizons.
Sometimes there is nothing in the past data to indicate that a change will
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cm monrmoﬂmpm. Thus, it may be impossible to anticipate a pattern chaoge
without inside wuwﬁamm@ Pattern shifts or the “change of paradigms” is
an everyday experience of business pecple and managers and by no means

mﬁ. 50me EHOW Wu.nwmm Ow. science m mwum HH N.AM O

. Are .EA.WR quantitative procedures for determining when a pattern or re-

kuommw”:ﬁ in a data series has changed? Such methods indeed exist and use
a tracking signal to identify when changes in the forecasting errors indicate
that a n.os...mnmohn shift has occurred. In a quality contxol chart of, e.g., a
production series of cars, the output of the equipment is sampled mmmomm,
mm;w. As M.owm as that sample mean is within the control limits, the equipment
is operating correctly. When this is not the case, the production is stopped
and an appropriate action is taken to return it to correct operation. In gen-
eral, automatic monitoring of quantitative forecasting methods follows the
concept of a quality control chart. Every time a forecast is made, its error
(e, mnEmH minus predicted value) is checked against the upper and lower
control limits. If it is within an acceptable range, the extrapolated pattern
has not changed. If the forecasting error is outside the control limits, there
has .Huaodm_u@ been some systematic change in the established wmzown..\wﬁo-
matic monitoring through tracking signals may be appropriate when large
numbers of .mop.mommﬁ are involved, But in the case of one or only a few series
one must still play a waiting game to discover whether changes in the Qmmam
of business data are occurring.
. Nonnwmmum the future of technological trends and markets, the prof-
itability of new products or services, and the associated trends mb employ-
ment and unemployment is one of the most difficult, but also most necessary
tasks of managers and politicians. Their decisions depend on a large number
of technological, economic, competitive, social, and political factors. Since
the emergence of commercial computers in the 1950s there has been hope
that one might master these complex problems by increasing computational
speed and data memory. Indeed, any quantitative forecasting method can
be vnomn.mﬁnﬁm to run on a computer. As no single forecasting method is
appropriate for all situations, computer-based multiple forecasting systems
have been developed in order to provide 2 menu of alternative methods fora
manager. An example is the forecasting system SIBYL which is named after
m.._m mﬂﬂnﬁ seer Sibyl. The story goes that Sibyl of Cumae sold the famous
Sibylian books to the Roman king Tarquinius Superbus, :

. Indeed, SIBYL is a knowledge-based system (cf. Sect. 5.3) for a comput-
erized vmmowwmm of forecasting methods [8.4]. It provides programs for data
preparation. and data handling, screening of available forecasting methods
application of selected methods, and comparing, selecting, and combining om.
forecasts. In screening alternative forecasting techniques, the inference com-
ponent of the knowledge-based system suggests those methods that most



392 8. Epilogue on Future, Science, and Ethics

closely match the specific situation and its characteristics based on a broad
sample of forecasting applications and decision rules. The final function of
SIBYL is that of testing and comparing which method provides the best
sesults. The interface of user and system is as friendly and efficient as pos-
sible, in order to suit a forecasting expert as well as a novice. Nevertheless,
we must not forget that SIBYL can only optimize the application of stored
forecasting methods. In principle, the predictability horizon of forecasting
methods cannot be enlarged by the application of computers. Contrary to
the learning ability of a human expert, forecasting systems such as SIBYL
are still program-controlied with the typical limitations of knowledge-based
systems.

In general, the computer-based automation of forecasting followed along -

the lines of linear thinking. On the other hand, the increasing capability of
modern computers encouraged researches to analyze nonlinear problems.
In the mid-1950s meteorologists preferred statistical methods of forecasting
based on the concept of linear regression. This development was supported
by Norbert Wiener’s successful predicting of stationary random processes.
Edward Lorenz was sceptical about the idea of statistical forecasting and de-
cided to test its validity experimentally against a nonlinear dynamical mode}
(cf. Sect. 2.4). Weather and climate is an example of an open system with
energy dissipation. The state of such a system is modeled by a pointin a
phase space, the behavior of the system by a phase trajectory. After some
transient process a trajectory reaches an attracting set (“attractor”) which
may be a stable singular point of the system (Fig. 2.14a or 3.11c), a periodic
oscillation called a limit cycle (Fig. 3.11d) or a strange attractor (Fig. 2.21).
If one wants to predict the behavior of a system containing a stable singular
point or a limit cycle, one may observe that the divergence of nearby trajec-
tories appears not to be growing and may even diminish (Fig. 8.2). In this
case, a whole class of initial conditions will be able to reach the steady state
and the corresponding systems are predictable. An example is an ecological
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Fig. 8.2. Predictable system with stable point attractor or limit cycie and convergence of
nearby trajectories {8.5]
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system au.un periodic trajectorties of prey and predator populations modeled
by nonlinear Lotka—Volterra equations. The divergence or convergence of

nearby trajectories can be measured numerically by the so-called Lyapunov
exponent:

Let us omma%n two nearby trajectories x(z) and x’(r) with the initial states x{(0)
mna. KSN at time ¢ == 0 and the length d(#} = |2'() — x{}| of the vector 4(r), If the
trajectories converge, then d{f) = e* and A < 0. The quantity A is called Lyapunov

exponent mnn defined as A{x(0), 4(0)) = m.mow mmm.woa /) In{d(6)/d(0))]. X it is positive,

. the Lyapunov exponent gives the rate of divergence. In Fig. 8.2, the model process x'(¢)

delivers reliable predictions of the real process x(¢), because the system is assumed to

have converging trajectories independent of their initial conditions.

. A Emma portrait of a nonlinear system may have a number of attractors
with different regions (“separatrices™) of approaching trajectories (cf. Fig.
2.10). For forecasting the future of the evolving system it is not sufficient
to wmo.é all possible attractors and the initial state x(0). What we need to
know in addition are the separatrices for attraction basins of the different
attractors. If the initial state of a system happens to be far away from the
basin of a certain attractor, the final state of the corresponding attractor
cannot be predicted.

In Fig. 2.22a-c, the nonlinear logistic map describes a transition from
..unm_ma to chaos depending on an increasing control parameter. Humm.E.m 2.23a,b
lustrates the corresponding sequence of bifurcations with the chaotic me.mm
Onnﬁ.nam @mwounm a critical threshold. If the corresponding Lyapunov expo-
nent is positive, the behavior of the system is chaotic. If it is zero, the system
has a tendency to bifurcate. If it is negative, the system isin a stable state
or branch of the bifurcation tree. In this case the system is predictable. In
the other cases the sensitivity to initial conditions comes into play. It is re-
markable that a nonlinear system in the chaotic regime is nonetheless not
completely unpredictable. The white stripes or “windows” in the grey veil
of a chaotic future (Fig. 2.23b) indicate local states of order with negative
Lyapunov exponents. Thus, in a sea of chaos we may find predictable islands
wm order. In this case the system is at least predictable for characteristic short
ntervals of time. )

. In general, the degree of predictability is measured by a statistical correla-
tion between the observed process and the model at the particular time since
the start of the observation. Values close to unity correspond to a satisfac-
tory moﬁmmm.m. while small values indicate a discrepancy between observation
mm&. prediction. Every forecasting model has a certain time of predictable be-
havior aff ter s&.mor the degree of predictability decreases more or less rapidly
to zero. With improvement of the model the time of predictable behavior
may be enlarged to some extent. But the predictability range depends upon
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fluctuational parameters. Weak microscopic perturbations of locally unsta-
ble chaotic systems can reach a macroscopic scale in a short time. Thus, local
instabilities reduce the improvement of predictable behavior drasticatly. The
predictability horizon of a forecasting system means a finite timespan of
predictable behavior that cannot be surpassed by either improved meastring
instruments or a refined prediction model. When we remember that the at-
mosphere is modeled, following Lorenz, by nonlinear systems with local and
global instabilities, we realize the difficulties encountered by meteorologists
in obtaining efficient long- or even medium-term forecasting. The beliefin a
linear progress of weather forecasting by increasing computational capacities -
was an illusion of the 1950s.
As nonlinear models are applied in different fields of research, we gain
general insights into the predictable horizons of oscillatory chemical reac-
tions, fiuctuations of species, populations, fluid turbulence, and economic
processes. The emergence of sunspots, for instance, which was formerly ana-
lyzed by statistical methods of time-series is by no means a random activity.
Tt can be modeled by a nonlinear chaotic system with several characteristic
periods and a strange attractor only allowing bounded forecasts of the varia-
tions. In nonlinear models of public opinion formation, for instance, we may
distinguish a predictable stable state before the public voting (“bifurcation™)
when neither of two possible opinions is preferred, the short interval of bifur-
cation when tiny unpredictable fiuctuations may induce abrupt changes, and
the transition to a stable majority. The situation reminds us of growing air
bubblgs in turbulently boiling water: When a bubble has become big enough,
its steady growth on its way upward is predictable. But its origin and early
growth is a question of random fuctuation. Obviously, nonlinear modeling
explains the difficulties of the modern Pythias and Sibyls of demoscopy.
Today, nonlinear forecasting models do not always deliver better and
more efficient predictions than the standard linear procedures. Their main
advantage is the explanation of the actual nonlinear dynamics in real pro-
cesses, the identification and improvement of local horizons with short-term
predictions. But first of all an appropriate dynamical equation governing an
observation at time ¢ must be reconstructed, in order to predict future behav-
jor by solving that equation. Even in the natural sciences, it is still unclear
whether appropriate equations for complex fields such as earthquakes can
be derived. We may hope to set up a list in a computer memory with typical
nonlinear equations whose coefficients can be automatically adjusted for the
observed process. Instead, to make an exhaustive search for all possible rele-
vant parameters, a learning strategy may start with a crude model operating
over relatively short times and then specify a smaller number of parameters
in a relatively narrow range of values, An improvement of short-term fore-
casting has been realized by the learning strategies of neural networks. On
the basis of learned data, neural nets can weight the input data and mini-
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mize the forecasting errors of short-term stock quotations by self-organizi
vm.On&Em.m (Fig. 6.4 a, b).-So long as only some stock market ma«.mmmﬁunwmmﬂﬂm
this E&Ema support, they may do well. But if all agents in a market use the
same learning strategy, the forecasting will become a self-defeating prophec
The reason is that human societies are not complex systems of E&mo&%
or ants, but the result of highly intentional acting beings with a greater or
lesser amount of free will [8.6]. A particular kind of self-fulfilling prophecy is
the Qedipus effect in which people like the legendary Greek king try, in <Mm
to change their futnre as forecasted to them. From a macroscopic &mﬁ@&%
we may, of course, observe single individuals contributing with their activ-
ities to the o.ozmomé macrostate of society representing cultural, political
and economic order (“order parameters”). Yet, maciostates of a woomns\ om.
course, do not simply average over its parts. Its order parameters mc.omu 1
E@mmuon the individuals of the society by orientating (“enslaving™) their MN
.mu:ﬂnm and by activating or deactivating their attitudes and capabilities ..HEm
kind of feedback is typical for complex dynamical systems. If the oouﬁ.& a-
m.mawgmm of the environmental conditions attain certain critical values a:% to
internal or external interactions, the macrovariables may move into an unsta-
ble aoﬁmﬁ out of which highly divergent alternative paths are possible. Tin
cmvan@oﬁvﬁ microfluctuations (e.g., actions of very few influential m,,.uc HM
mn_muc.mn dicoveries, new technologies) may decide which of the diver wu g
paths in an unstable state of bifurcation society will follow. oo
One of the deepest insights into complex systems is the fact that even
n.oaﬁmaﬁ knowledge of microscopic interactions does not guarantee predic-
tions .om the future. In this book, we have learnt that simple rules of physical
genetic, neural, or social dynamics can generate very complex and even Euu
dom patterns of material formation, organic growth, mental recognition
and social @mwmion Randomness, in a practical sense, only means that mcu
ture formation or behavior cannot be detected by familiar and well-known
patterns or programs. In this case, the computability of the future is not re-
n;o@m relative to certain patterns and programs. Randomness, in principle
ﬂﬂﬁam compnutational irreducibility: Then, there is no finite Ewgoa of wamu
dicting how the system will behave except by going through nearly m:ﬂﬁo
steps of m”oEE development. In the case of randomness, there is 1o shorteut
to n<o_ac.o? Mathematical systems like cellular automata (CA) or technical
systems like cellular neural/nonlinear networks (CNN) can achieve exactl
the same .Haﬁm o.w complexity and randommness of nature and society. .m.wz,w
the ﬂ.mmm:ou& view of science — that precise knowledge of laws w:oém. reci :
forecasting ~ fails in the case of nonlinear and random dynamics prEEe
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8.2. Complexity, Science, and Technology

Despite the difficuities referred to above, we need reliable support for short-,
medinm-, and long-term forecasts of our local and global future. A recent
demand from politics is the modeling of future developments in science and
technology which have become 2 crucial factor of modern civilization. Actu-
ally, this kind of development seems to be governed by the complex dynarmics
of scientific ideas and research groups which are embedded in the complex |
network of human society. Common topics of research groups attract the
interest and capacity of researchers for longer or shorter periods of time.
“These research “attractors” seem to domninate the activities of scientists like
the attractors and vortices in fluid dynamics. When states of research become
unstable, research groups may split up into subgroups following particular
paths of research which may end with solutions or may bifurcate again, and
so forth. The dynamics of science seems to be realized by phase transitions in
a bifurcation tree with increasing complexity. Sometimes scientific problems
are well-defined and lead to clear solutions. But there are also “strange” and
«diffuse” states like the strange attractors of chaos theory. . .
Historically, quantitative inquiries into scientific growth started with sta-
tistical approaches such as Rainoff ' work on “Wave-like fluctuations of cre-
ativity in the development of West-European physics in the 18th and 19th
century” {1929). From a sociological point of view Robert Merton discussed
“Changing foci of interest in the sciences and technology”, while Pitirim
Sorokin analyzed the exponential increase of scientific discoveries and tech-
nological inventions since the 15th century. He argued that the importance
of an invention or discovery does not depend on subjective weighting, but
on the amount of subsequent scientific work inspired by the basic innova-
tion. As early as 1912 Alfred Lotka had the idea of describing true epidemic
processes like the spread of malaria and chemical oscillations with the help
of differential equations. Later on, the information scientist William Goff-
man applied the epidemic model to the spread of scientific ideas. There isan
initial focus of “infectious ideas” infecting more and more people in quasi-
epidemic waves. Thus, from the viewpoint of epidemiology, the cumulation
and concentration in a scientific field is modeled by so-called Lotka- and
Bradford-distributions, starting with a few articles of some individual au-
thors which are the nuclei of publication clusters {8.7]. The epidemic model
was also applied to the spread of technical innovations. In all these examples
we find the well-known S-curve of a Jogistic map (Fig. 2.22a) with a slow start
followed by an exponential increase and then 2 final slow growth towards
saturation, Obviously a learning process is also described in the three phases
of an S-curve with slow learning success of an individual in the beginning,
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EmuwnmmamxuoumummﬁbaammwmQm .
saturation. . nd finally a slow final phase approaching

The transition from statistical analysis to dynamical models has the

great methodological advantage that incomprehensible phenomena such as

strange fluctuations or statistical correlations ienti iviti
mmcmﬂaﬁma mn computer-assisted simulation 86mmmmwwwﬂmmwﬂ%wﬁmﬂwwﬂw
ical scenarios. The epidemic mode! and Lotka~Volterra equation were only
m.m.amﬁ attempt to simulate coupled growth processes of scientific comimu-
nities. However, essential properties of evolutionary processes like creation
of bm&.mﬁcogaﬂ elerments (mutation, innovation, etc.) cannot be reflected
Evolutionary processes in social systems have to be pictured through Eﬂh
stable transitions by which new ideas, research fields, and technologies (like
new products in economic models) replace already existing ones and thereby
owmam.a the structure of the scientific system. In a generalization of Eigen’s
equation of prebiotic evolution (cf. Sect. 3.3}, the scientific system is de-
scribed by an enumerable set of fields (i.e., subdisciplines of a scientific re-
search mw_&_ each of which is characterized by a number of occupying el-
ements (i.e., scientists working in the particolar subdiscipline). Elementa
processes of self-reproduction, decline, exchange, and input from mﬁommmm
sources or spontaneous generation have to be modeled. Each self-replication
or death process changes only the occupation of a single field. For simple
mEaE.‘ self-reproduction processes without exchange, the selection value omw. a
field is given by the difference between the “birth” and “death” rates of the
field. When a new field is first populated, it is its selection value that decides
Ewﬁrmn the system is stable or unstable with respect to the innovation. If its
selection <m.?n is larger than any other selection value of existing mma.m the
new mﬂa will outgrow the others, and the system may become unstable “.Hw@
9,3&55 of new fields with higher selection values characterizes a mH.E le
selection process according to Darwinian “survival of the fittest” d
But we must not forget that such mathematical models do .uoﬁ impl
the reduction of scientific activities to biological mechanisms, The <mnm%mw
m.m.a constants of the evolution equation do not refer to biochemical quan-
tities and ﬁmmmﬁmﬁmuﬁ but to the statistical tables of scientometrics. Self-
reproduction corresponds to young scientists joining the field of Hmm.omnow
they want .8 start working in. Their choice is influenced by education pro-
cesses, .moﬂ.m_ needs, individual interest, scientific schools, ete. Decline meb
Emw scientists are active in science for a limited bﬁwvmm of years. The mo.m
entists may leave the scientific system for different reasons (e.g. mw& E&M
Eogzﬁ means the process of exchange of scientists between Hmwamwom fields
mnoo.m.&um to the model of migration. Scientists might prefer the direction
of higher attractiveness of a fleld expressed by a higher self-reproduction
rate. a.zwnm processes inchude exchange between fields with nonlinear growth
functions of self-reproduction and decline, then the calculation of selection
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values of an innovation is a rather complicated mathematical task. In gen-
eral, a pew field with higher selection value is indicated by the instability of
the system with respect to a corresponding perturbation.

Actually, scientific growth is a stochastic process. ‘When, for example,
only a few pioneers are working in the initial phase of a new field, stochas-
tic fluctuations are typical. The stochastic dynamics of the probable occu-

_pation density in the scientific subfields is modeled by a master equation
with a transition operator which is defined by transition probabilities of seif-
reproduction, decline, and field mobility. The stochastic model provides the
basis for several computer-assisted simulations of scientific growth processes.
The corresponding deterministic curves, as average over a farge number of
identical stochastic systems, are considered for trend analysis, too. Asaresult,
the general S-shaped growth law for scientific communities in subdisciplines
with a delayed initial phase, a rapid growth phase, and a saturation phase
has been established in several simulations. In a series of simulations (Fig.
8.3), a research field was assumed to comprise about 120-160 members. For
five fields, 100 scientists were chosen as initial condition with the saturation
domain near the initial conditions. A sixth field is not yet set up (with the
initial condition of zero members). In a first example, the influence of the

self-reproduction process on the growth curve of the new field was simulated
for several cases. With increasing self-reproduction rates the new field grows
ever more rapidly at the expense of neighboring fields.

The emergence of a new field may have a tendency to more coexistence or
selection, The growth of the initial phase may be more or less rapid orcan also
be delayed. A famous example of delayed growth in the history of science
is chaos theory itself, which was treated by only very few scientists (e.g.,
Poincaré) in itsinitial phase. Although the mathematical principles of the new
field were quite clear, its exponential growth began only somse years ago when
computational technology could handle nonlinear equations. Sometimes an
emerging field cannot expand to a real domain of science, because it has only
a weak selection advantage in comparison with mighty surrounding fields. Tt
is a pity that some technological fields such as alternative energies (e.g., wind,
solar) are still in such a poor state, surrounded by the powerful industries of
traditional or nuciear energy, If a new attractive field emerges, a strong influx

of scientists from the surrounding fields can be observed. These people are
adapting to the style and problem solving pattern of the new field. This kind
of directed field mobility sometimes leads to the phenomena of fashion in
science. ’

Tt is well-known that the S-shaped nonlinear logistic map gives rise to
a variety of complex dynamical behaviors such as fixed points, oscillations,
and deterministic chaos, if the appropriate control parameters increase be-
yond certain critical values (Fig. 2.22). Obviously, both the stochastic and
the deterministic models reflect some typical properties of scientific growth.
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Fig.83. Influence of the self-reproducti ienti
Cubves 5 Beigh oo o i uv oduction rate of a new scientific field on the growth

Such effects .m.% structural differentiation, deletion, creation, extension of
new fields ,”55 delay, disappearance, rapid growth, oﬁ&:ooﬁnm fashions
and regression. The computer-assisted graphic simulations of these dynami .
cal effects allow characterization by appropriate order parameters which .
Mwmhwwww on the wmmm.m. ommamn#o_snﬁo data. Possible scenarios under <m€ﬂm
ions can be simu i i
condtio am,iowuambﬁm.m»&, in order to predict the landmarks and the scope
. But so far, the .96533 of scientific research fields has been considered
in the model only in terms of changes of the scientific manpower in the se
lected fields. A more adequate representation of scientific growth must ﬁmmwnw
mmmomosnﬁ of the EoE.oE;mo_&nm processes of scientific endeavors. But itis a-
H mﬁ MM“M Msmmwoa&omﬂn& problem ..8 m.ua anadequate state space representing
hy opment of ?.oEQ.u solving in a scientific field, In the mathematical
.aoQ.Om gnmomnnmm evolution, the species can be represented by points i

H._Hm:..&bumbwwo:m_ space of biological characters (Fig. 3.4). The evolution M.M. M
species corresponds to the movement of a point through the wmanoﬂwwmo char-
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co-citation clusters can be represente
dimensions. Sometimes res
words {“macro-terms
their GCCUIrence or ¢o-

acter space. Analogously, in the science system, & high-dimensional character
figurations of scientific

space of scientific problems has to be established. Con:
articles which are analyzed by the technique of multidimensional scaling in
d by points in a space of two or three

garch problems are indicated by sequences of key-
™y which are registered according to the frequency of
occurrence in a scientific text.

1n a contimuous evolution model each point of the problem space is de-
scribed by a vector corresponding to 2 research problem (Fig. 8.4a). The
problem space consists of all scientific problems of 2 scientific field, of which
some are perhaps still unknown and not under investigation. This space is
mmetric, because the distance between two points corresponds to the degree of
thematic connection between the problems represented, The scientists work-
ing on problem g at time ¢ distribute themselves over the problem space with
the density x{g. ). In the continuouns model x{g, t} dg means the number of
scientists working at time ¢ in the “problemm element” dq (Fig. 8.4b).

4y | a) .
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Fig. 8.4ab. A two-dimensional problem space (a) with research fields () as clouds of
retated problems, possible nuclei () of new research fields, and a potential landscape )]
of research activities x{g, 1) in problem g = (gy, qz) of the problem space at time ¢ {8.5]

Thus the research fields may correspond to more or less closely con-
nected point clouds in the problem space. Single points between these areas
of greater density correspond to scientists working on isolated research prob-
lems which may represent possible nuclei of new research fields. History of
science shows that it may take decades before a cluster of research prob-
lems grows up into a research field. In the continuous model, field mobility
processes are refiected by density change: If a scientist changes from prob-
lem g to problem ¢, then the density x(g, ) will get smaller and x(g’, 1) will

8.2 Complexity, Science, and Technology 401

wammwwmﬁwa ﬂoﬁBoE of scientistsin the problem space is modeled by a eer
uction~transport equation. A function a( :
: ISPOTt &6 . q) expresses the rat
Mwmow awm s:%wmn of scientists in field g is growing through mnﬁ.ﬁﬁoaﬁmﬂ
ecline, Thus, it is a function with many maxi ini
problern space, expressing the increasin Gecroasing et o e
) exp g or decreasing attractiveness of th
WMMNHMEm ina scientific field. In analogy to physical potentials (e.g., Fig, M Svm
one Mw interpret nﬁ.v as a potential landscape of attractiveness with Ezm,
valleys, representing the attractors and deadlocked areas of
fleld (Fig. 8.4b). # roseareh
mﬁoumuuwmmﬂ.ﬁ,maomma of the growth of knowledge become testable by sci
. . Thus, they may open a bridge between phil ence
with its conceptual ideas of scienti st o bl
ntific growth and history of sci ith i
evaluation of scientific documents. I iti entometios au attery
. In cognitive scientometric
has recently been made to i obloans o
quantify the concept of research
to represent them in appropri ot D
: priate problem spaces by bibliometri iti
and social characteristics. The simpli oy of cofoncy
] ) plified schemes of the hist f sci
which have been suggested b 1d perhape be
y Popper, Kuhn, and others, could pe
> ) N rha
%mwwmwwu Wuh. .namﬁmwmo Eﬁo&%ap Kuhn’s discontinuous sequence MWE wmewm
-and “revolutionary” science is obviously not abl
growth of knowledge. On the other hi v blisf of Somo b ot
. and, the naive belief of istori
that the growth of science is i , i e e s
: f a continuous cumulation of eternal truthsi
appropriate to the-complex dynamics of r i 2 Popoert
OpI esearch in any way. Even P !
sophisticated late philosophy that sci v throngh 8 mono.
his cience does not grow th
tonic increase of the number of i i i o e
. indubitably established 1
learning strategies of h itici e reison aey
: ypotheses and criticism needs m isi
clarification with reference to th nging histori ints ot o
: e changing historical standard
ology, institutionalization, and o izati i oo
2 , rganization. The increasing co i
capacities of modern computers enabl Cative Spmrach with
: ! ( e a new quantitative & i
simulation experiments in social sci e e
. - sciences. The great advantage of i
models is their computer-assisted ic i i B el soms
odels is - graphic illustration of s i
with varying parameters, Thes i o o s ios
. e scenarios may confirm, restrict
chosen model. Last but not lea fal ot o decisiane
: el st, we need reliable support for decisions i
science policy. Different scenario onts may helo g 1o
) s of future development
decide where to invest our limi R budae ot e o
. : imited resources of rese
Rm“%n desirable future states of society. esearch budget and how to
I MMM MMMMMWMH%WQEm maa computer-assisted simulation may enable
utures, but provides no algorithm i
o : ] : gori to decide betwe
Ew“ﬁﬂ“%m“ﬁmm%m% Esm.w _uawmzo?mg In order to realize desirable mHu
: . Since the 1960s the reports of the Cl .
tried to initiate internation o o s have
al debates about the goal i
e ‘ abot goals and alternative fu-
’ Hmms, Mmmwnéﬁwwmnbﬂﬁ mwmmoﬁmawg guantitative long-term forecasts. In Sect
-1, 1tations of quantitative long-term fi ing i .
H . juantita g-term forecasting in a non-
inear world. Consequently, scientific ideas and technological %moﬁ&mW



1
;
i
i

402 8. Epilogue on Future, Science, and Ethics

cannot be forced into being by political decisions. But they must no longer
be fateful randorm events which may or may not happen. Weneed instruments

to evaluate desirable goals and their chance of realization.

A nonquantitative approach is the so-called Delphi method, used to

prepare decisions and forecasts of scientific and technological trends by a

panel of experts. The name “Delphi” is a reference to the legendary Pythia

(Fig. 8.1) who was said to prepare her prophecies by gathering information

about her clients. The Delphi method of today uses the estimates of scientific
experts. The individual experts are kept apart s0 that their judgement is not
influenced by social pressure Of group behavior. The experts were asked in
a letter to name and to weight inventions and scientific breakthroughs that
are possible and/or desirable in a certain period of time. Sometimes they are
not only asked for the probability of gach development: Additionally, they
are asked to estimate the probability that the occurrence of any one of the
potential developments will influence the likelihood of accurrence of each
of the others. Thus one gets & correlated network of future developments
which can be represented by a matrix of subjective conditional probabilities.
In the next phase the experts are informed about the items with general
consensus. When they are asked to state the reasons for their disagreement
with the majority, several of the experts re-evaluate their time estimates, and
a narrower range for each breakthrough may be arranged.

The Delphi method, of course, cannot deliver a single answer. But the
spread of expert opinions gathers considerable information about potential
major breakthroughs. The average deviations from the majority should be
narrowed down without pressuring the experts with extreme responses. But
the Delphi method therefore cannot predict the unexpected. Sometimes the
Delphi method is supported by the relevance-tree method, in order to se-
lect the best actions from alternatives by constructing decision trees. The
relevance-tree method uses the ideas of decision theory to assess the desir-
ability of a certain future and to select those areas of science and technology
whose development is necessary for the achievment of those goals.

Obviously thereis no single method of forecasting and deciding in a com-
plex nonlinear world. ‘We need an integrative (“hybrid”) network of quanti-
tative and qualitative methods. Finally, we need ethical tandmarks to guide
us in applying these instruments and in mastering the future.

8.3 Complexity, Responsibility, and Freedom

In recent years, ethics has become a major topic attracting increasing interest
from 2 wide variety of professionals including engineers, physicians, scien-
tists, managers, and politicians. The reasons for this interest are the grow-
ing problems with the environment, the economy, and modern technologies,
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questions of responsibility, increasing alarm, and decreasing acceptance of
ow._sn& conseguences in a highly industrialized world. But we Ham%u@ w“wmm
M an ME. standards of ethical behavior have not fallen to Earth from mamﬁm
nrmumwmm %MM MMMM mﬁwww&mww some mysterious higher authority. They have
3.2%&0: of our monmooawﬁmwﬂwwmmwmumﬁ pecause they are involved in the
n mwoﬁ.mnmam human society we must not forget the hi i
Hmmm_..aucﬂé of a complex system with mﬁasmoﬁmw:w mnaammw wwwuwwr%mﬂ.w MM
vmucoﬂmm measurement problen: in social sciences arising from Hwa fact that
scientists owmn.ﬁmum and recording behavior of society are themselves me :
bers of mﬁ.mooﬁ system they observe. Well-known examples are the mmmoﬁmgm
%Bo%owwo opinion-polling during political elections. Furthermore, meo_..mm
ical E.oao_m ﬁ.um society may have a normative function influencing Hmﬁ futu .
behavior of its agents. A well-known example was the social Darwinism HM.
the GE century which tried to explain the social development of manki oa
as a linear noazzﬁ.mmom of biclogical evolution. Actually, that social the o
Eﬁmﬁaa. a brutal ideclogy legitimating the ruthless selection of the mo%mww
economic, and racial victors of history. Today, it is sometimes fashio WH u
E Hmmﬂgma political ideas of basic democracy and ecological moosohw ca
gouom_mm_ models of self-organization [8.10]. But nature is neither oo%\n d
bad, .am.ncha vwmn..mmﬁ nor militant. These are human evaluations w@momo i oM
strategies over millions of years have operated at the expense of .B nmwpomm
momimﬁ.nonm mu.m species with gene defects, cancer, etc., and have Wwi wWo
man point of view, perpetrated many other cruelties. They nmgo.ﬂ delive ﬁm .
ethical mﬂmagm&m for our political, economic, and social developments e
.Hm this book we have seen that the historical models of life Emna. and
society often depend on historical concepts of nature and Emmoaoﬁ _ﬁ .
dards M», H&Eomomw. mm.@nnmmmw the linear and mechanistic view of nmcmmmw
Wﬂwwumommoﬂw_mmwﬂwmwﬂwummﬂm Mw Fmpm_rmmﬁaﬁ of %mnu.mr social, and technical
1t ; cal norms and values which can -
m,wmmﬁooa E:roﬁ. the .owauaﬁmo concepts of the historical o@oowmmwwmwmww
ey arose. The ?ﬂonom_ interdependence of epistemology and ethics do
not mean any kind of relativism or naturalism. As in the case of m&mﬂ.mm
Emommm Ema E.%oﬁwm.mmm we have to distinguish their context of historical m”nm
WMWM : ﬂo_cmﬁﬁ E<manom.mﬂa discovery from their context of justification and
vali H”H M, : m\mmw_gmumﬂ rights rmsm.w historical development with changing
snmmﬂw»woa .mm M.:QMWMHQMHM%MM Womma Emﬂw et oo b
: . Teedom™. Thus, before we discu i
ethical consequences in a complex, nonlinear, an NS
take a mwon.ﬁ mgmm.on at the historical aa<&ovn,5nw oHM M%HHMMMMMMM hould
o mﬂgom is a discipline of ﬁ.?._%oﬁrw like logic, episternology, philosophy
0 mo”_mwnmu language, law, religion, and so on [8.12]. Historically, the word
sthics” stems back to the Greek word 7doc, which means osmﬁoﬂv and EMM-
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tice. Originally, ethics was understood as a doctrine of moral custorns and
institutions teaching people how to live. The central problem of ethics has
become that of finding a good moral code with advice on how to live well,
how to act justly, and how to decide rationally. Some essential concepts of
ethics were already discussed in Greek philosophy following Socrates. His
student Plato generalized the Socratic quest for a good life to the universal
idea of the greatest good, which is eternal and independent of the historical
life behind the transistory and continously changing world of matter [8.13].
Aristotle criticized his teacher’s doctrine of eternal values as ignorant of
real human life. For Aristotle the validity of the good, the just, and the ratio= -
nal is referred to the political society (polis), the family, and the interaction
of single persons [8.14]. Justice in the polis is realized by the proportionality
or the equilibrium of natural interest of free men. The greatest good of man
is happiness, which is realized by a successful life according to the natural
customs and practice in the polis and the family. Obviously, Aristotle’s con-
cept of ethics corresponds to his organic view of a nature filled with growing
and maturing organisms like plants, animals, and humans.

After the dissolution of the Greek polis, ethics needed a new framework
of standards. In Epicurean ethics, the internal equality of individual life,
action, and feeling was emphasized, while the ethics of the Stoics underlined
the external equality of all people achieved by nature. In the Christian Middle
Ages a hierarchy of eternal values was guaranteed by the divine order of the
world. At the beginning of modern times the theological framework as a
universally accepted foundation. of ethics was ripe for dissolution.

Descartes not only suggested a mechanistic model of nature but also
demanded a moral system founded upon scientific reason. Baruch Spinoza
derived an axiomatized system of rationalist morality corresponding to the
deterministic and mechanistic model of nature. As the laws of nature are
believed to be identical with the laws of rationality, human freedom only

could mean acting according to deterministic laws which were recognized
as rational. The greatest good meant the dominance of rationality over the
affects of the material human body. Hobbes defended a mechanistic view
of nature and society, but he doubted human rationality. Political laws and
customs can only be guaranteed by the centralized power of “Leviathan”.

The greatest good is peace as a fixed and final equilibrium in an absolutist
state.

The liberal society of Locke, Hume, and Snith was understood by anal-
ogy with Newton’s model of separable forces and interacting celestial bodies.
In the American and French revalutions, individual freedom was proclaimed
as a natural right [8.15]. But how to justify individual freedom in a mechanis-
tic world with deterministic causality? Bvery natural event is the effect of a
linear chain of causes which in principle can be derived by mechanisticequa-
tions of motion. Only humans are assumed to be capable of spontaneous and
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of ethics in the actual customs and morality of a civil society reminds the
reader of Aristotle’s realistic ethics of the Greek polis. But Aristotle’s order
of society was static, while Hegel assumed a historical evolution of states and
their institutions. .

From a methodological point of view, it is remarkable that Hegel already
distinguished between the micro-level of individuals and a macro-level of
societies and their institutions which is not only the sum of their citizens.
Furthermore, he described an evolution of society which is not determined
by the intentions and the subjective reason of single individuals, but by the
self-organizing process of a collective reason. Nevertheless, Hegel believed in
a rather simplified model of evolution with sequential states of equilibrium
Jeading to a final fixed point which is realized by the attractor of a just civil
society. Actual history after Hegel showed that his belief in the rational forces
of history driving human society toa final state of justice by self-organization
was a dangerous illusion. It is well known that his model was modified and
misused by totalitarian politicians of the political right and left.

. Friedrich Nietzsche attacted the belief in objective reason as well as
in eternal ethical values as idealistic ideologies which were contrary to the
real forces of life. Nietzsche’s philosophy of life was infiuenced by Darwin’s
biology of evolution, which had become a popular philosophy in the late
15th century. Although Nietzsche had criticized nationalism and racism in
his writings, his glorification of life and the victors in the struggle of life was
terribly misused in the politics of our century. Nevertheless, he is another
example to show that concepts from the natural sciences have influenced
political and ethical ideas [8.19}

Nietzsche’s nihilism and his critique of modern civilization were contin-
ned by Martin Heidegger in our century. In Heidegger's view, the technical
evolution of mankind is an automatism without orieatation which has for-
gotten the essential foundation of man and humanity. A philosopher like
Heidegger cannot and will not change or influence this evolution. He oaly
has the freedom to bear this fate with composure. But in what way is Hei-
degger’s attitude against technology and civilization more than resignation,
fatalisn, and an escape into an idyllic utopia without technology which has
never existed in history? It seems to be the extreme counterposition to the
Laplacean belief in an omnipotent planning and controlling capacity in na-
sure and society [8.20].

What are the ethical consequences of the complex system approach.
which has been discussed in this book? First, we must be aware that the
theory of complex systems is not a metaphysical process ontology. It is not

an epistemic doctrine in the traditional sense of philosophy. The principles
of this methodology deliver a heuristic scheme for constructing models of
nonlinear complex systems in the natural and social sciences. If these models
can be mathematized and their properties quantified, then we get empirical
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models which may or may not fit the data. Moreover, it tries to use a mini

mumn wm hypotheses in the sense of Ockham’s razor. Thugitisa EQSNEQHMMM.
wjﬁznﬁ. testable, and heuristically economical methodology. Husﬂw@wEoHo.
MM M an interdisplinary research program in which several natural and moommm
mmmmwnww Mm_mmwwwwn._. However, it is not an ethical doctrine in the traditional
. Nevertheless, our models of complex, nonlinear, and random processes
in nature and mo&mﬂw have important consequences for our behavior. In gen-
eral, linear thinking may be dangerous in 2 nonlinear complex H.nm.mﬂ méw
wmﬁh.mwmw that traditional concepts of freedom were based on linear Eﬂaow
of behavior. Hﬁ this framework every event is the effect of a well defined initial
cause, Thus, if we assumne a linear model of behavior, the responsibility for
an event or effect seems to be uniquely decidable. But what about the global
m.ooHomEmm amammn which is caused by the local nonlinear interactions of bil-

lions of seif-interested people? Recall, as one example, the demand for a well

balanced complex system of ecology and economics. As ecological chaos

_can be global and uncontrollable, some philosophers like Hans Jonas have

proposed that we stop any activity which could perhaps have some unknown
consequences [B.21]. But we can never forecast all developments of a com-
Eo.x system in the long run. Must we therefore retire into a Heidegger-like
.mn:sam A.um resignation? The problem is that doing nothing does not necessar
ily stabilize the equilibrium of a complex system and can drive it to mnoﬁmm
metastable state. In chaotic situations, short-term forecasting is possible in
oom.HEax systems, and attempts are being made to improve it in economics
for instance. But in the case of randomness and information noise, an Eum
of forecasting fails, eventhough we may be completely informed umcow” th
local Emmm of interaction in a complex system. e
Ina :.Ewmn model, the extent of an effect is believed to be similar to the
extent o.w its cause, Thus, a legal punishment of a punishable action can be
mnovogoma to the degree of damage effected. But what about the butterfl
effect of tiny mﬁoﬁmmonm which are initiated by some persons, groups ow
mﬁm.m“ and which may result in a global crisis in politics and uanoﬁowswo%
mn.;. Instance, consider the responsibility of managers and politicians ﬁ&owm
failure can cause the misery of thousands or millions of people [8.22]. But
MWMN Mwo.ﬁﬁawmwoummdmmq in the case of random events? Hamouwmmon. aowmm in
he SQH_MMm or example, must be prevented beforehand. If random happens,
N As the ecological, nnoﬂon.mo, and political problems of mankind have
become global, complex, nonlinear, and random, the traditional concept of
S&Sas& vaommwdﬁq is questionable. We need new models of oozmmmo
”oameoH. ammﬁ.aﬁm on the different degrees of our individual faculties E“M
Emwmwﬁ.m. Individual freedom of decision is not abolished, but restricted b
collective effects of complex systems in nature and monmmmw which cannot cw
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forecast or controlled in the long run. Thus, it is not enough to have good
individual intentions. We have to consider their noulinear effects. Global
dynamical phase portraits deliver possible scenarios under certain clrcum-
stances. They may help to achieve the appropriate conditions for fostering
desired developments and preventing evil ones.

The dynamics of globalization is surely the most important political chal-
lenge of complexity for the future of mankind. After the fall of the Berlin
wall, politicians believed in the linear assumption that coupling the dynarnics
of free markets and democracy would automatically lead to a community
of modernized, peace-loving nations with civic-minded citizens and con-
sumers. This was a terrible error in a complex world! From our point of
view, complexity is driven by multi-component dynamics. Politicians and
economists forgot that there are also ethnic and religious, psychological and
social forces which can dominate the whole dynamics of a nation ata critical
point of instability. As we all know from complex dynamical systems, we
must niot forget the initial and secondary conditions of dynamics. Instability
emerges if free markets and elections are implemented under conditions of
underdevelopment.

Recent studies [8.23] demonstrate that in many countries of Southeast
Asia, South America, Africa, Southeast Europe, and the Middle East the
coupling of laissez-faire economics and electoral freedom did not automati-
cally lead to more justice, welfare, and peace, but tipped the balance in these
regions toward disintegration and strife. One reason is that these countries
rmainly have no broad majority of weil educated people. Thus, minorities
of clever ethnic groups, tribes, and clans come to power and dominate the
dynamics of markets and politics. In the terminology of complex dynamics,
they are the order parameters dominating (“enslaving”) the whole dynam-
ics of 2 nation. Again, the good intentions of democracy and free markets

are not sufficient. We must consider the local conditions of countries and
regions.

In classical philosophy, the transition from an intended development to
a development contrary to the spirit of the philosophy has become famous as
a contradiction of dialectics (e.g., Hegel). Good intentions may lead to bad
effects. But sometimes human agents are driven by history to good effects
without their subjective intentions. Hegel called it a “stratagem of reason”
(List der Vernunft). Actually,itisa well-known effect of nonlinear dynamics.
Therefore, market-dominant minorities are not a priori evil. Minorities are
also the driving forces of activity. If they are open-minded and flexible, they
prevent narrow-minded “enslaving” which may be successful only for a short
time. In their own interest, they must try to stabilize the whole system in the
long run. Therefore they should help dampening the social effects of free
markets, bridging social cleavages, and transcending class division during a

phase transition to democracy and welfare for the majority of the people.

8.3 Complexity, Responsibility, and Freedom 409

WMﬂwaMMm ﬁﬁmmm@wﬂmwmﬁoum may be different from region to region in the
rid. Responsible decisions require sensativi iti in 1i
P tho bortoaty effeot q nsativity to local conditions in rm.&ﬂ

There are not only local minorities in regions and countries. During the
process of globalization, a minority of nations, institutions, and companies
can come to power and dominate the whole dynamics of global economics
and politics. Recent discussions on globalization show that alot of people are
not happy with the restilts of globalization. But it is necessary to understand
that Eavmﬁ.&wop means nothing more than the gobal dynamics of political
mﬁ.m £conomic gystems in the world. So, in a first run, it is neither good nor
evil like the dynamics of weather. But contrary to weather, the dynamics of
m.mcwmmm.maom is generated by the interactions of humans and their institu-
tions. Thus, there will be a chance to influence globalization if we take into
account the dynamical laws of complexity and nonlinearity.

It is a hard fact that the order parameters of globalization have been
defined by a minority of nations, They are the world’s preeminent politi-
nmw., economic, military, and technological powers whether we like it or not.
wr;.owovwma_ mathematicians, and systemns scientists have no power. But
again, we should use Hegel's “stratagem of reason’: Minorities are also m:“\
mmaﬂaﬁm.Om driving power which enables chances for change. Concepts and
Emm,ﬁ.w /.SEQE political power have no chance. If the dominating minorities of
mmogrn.mmow are open-minded and flexible, they will prevent narrow-minded .
“enslaving” which may be successful only for a short time. In their own in-
terest, they must try to stabilize the whole system in the long run. Therefore
m_ﬂ.\ should help dampening the social effects of global free markets, bridging
social cleavages, and transcending class division during a phase transition to
global democracy and welfare for the majority of the people.

Globalization means the critical phase transion to global governance in
E.m .s_oza. We need new global structures to manage the political, economic,
MEEE..% mna technological power in the world according to the interests om.
u&m majority of people on earth. Global structures emerge from the nonlinear
interactions of peoples, nations, and systems. At the end of the 18th century,
Kant already demanded a law of nations leading “To Eternal Peace” (1 @&,
[8.24]. After the Ist World War, president Wilson of the United States strongly
infiuenced the foundation of the League of Nations. After the 2Znd World War,

- the United Nations (UN) presented a new chance to handle international

..noammoaw but they often fail because of their lack of power. The dilemma of
international law is that law needs power to enforce rights and ethical norms

.Hwe...mwoﬁ nations have to give up parts of their sovereignty, in order to ,cm
dominated by commonly accepted “order parameters”. After September 11
2001, a .mwowa network of terrorism threatens the preeminent political and
economic nations of the world. This is the reason why especially the United

. mﬁ_wﬁmm, which historically helped found the League of Nations as well as the
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Unitied Nations, now hesitates to restrict its national sovereignty and prefers
to organize its own national security through global military defense.
Clearly it is a long way to global governance among autonomous na-
tions. On the other hand, we must not forget the practical progress made by
new social and humanitarian institutions of the UN. New economic, tech-
nological, and cultural networks of cooperation emerge and let people grow
slowly together in spite of reactions and frictions in political reality. On the
way to “eternal peace”, Kant described a federal (multi-component) com-
munity of autonomous nations self-organizing their political, economic, and

cultural affairs without military conflicts. But an eminent working condition

of his model is the demand that states organize their internal affairs accord-
ing to the civil laws of freedom. It is a hard fact of historical experience that
civic-mindedness and humanization have sometimes not only be defended,
but also enforced by military power. As long as the demand for civil laws of
freedom is not internationally fulfilled, the organization of military power is
an urgent challenge to globalization.

Globalization and international cooperation is accelerated by the growth
of global information and computational networks like the internet and wire-
less mobile communication systems. On the other hand, the electronic vision
of a global village implies a severe threat to personal freedom. Ifinformation
about citizens can easily be gained and evaluated in large communication net-
works, then the danger of misuse by interested institutions must to be taken
in earnest. As in the traditional economy of goods, there may arise informa-
tion monopolies acting as dominating minorities prejudicing other people,
classes, and countries. For instance, consider the former *“Third World” or
the “South” with its less developed systems for information services which
would have no fair chance against the “North” in a global communication
village. .

Our physicians and psychologists must learn to consider umans as com-
plex nonlinear entities of mind and body. Linear thinking may fail to yield
a successful diagnosis. Local, isolated, and “linear” therapies of medical
treatment may cause negative synergetic effects. Thus, it is noteworthy that
mathematical modeling of complex medical and psychological situations ad-
vises high sensitivity and cautiousness, in order to heal and help ili people.

The complex system approach cannot explain to us what life is. But it can -

show us how complex and sensitive life is. Thus, it can help us to become
aware of the value of our life.

But what about the value of our life if it is computable? One of the most
essential insights of this book is that the dynamics of nature and society are
not only characterized by nonlinearity and chaos, but by randomness, too.
Only in randomness can human free will have a real chance [8.25]. In the
completely deterministic and computational world of a mechanical nature,
Kant had to postulate a transcendental world in order to make free will,
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ethical duties, and responsibility possible. In random states of nature and
mo&m@” the behavior of 2 system is not determined in any way. Random
.@nEEow can be generated even if all rules of interaction of the elements
in 2 dynamical system are known. In this case, the dynamics of a system
cerrespond to irreducible computation, which means that there is no chance
.ow forecasting, The only way to learn anything about the future of the system
is to perform the dynamics. The macrobehavior of a brain, for example, could
correspond to an irreducible computation, although we know all the tules
of synaptic interactions. In this case, there is no shortcut or finite program
for our life. We have to live our life in order to experience it. It is amazing
that human free wiil seems to be supported just by the mathematical theory
of computability. :
Obviously, the theory of complex systems has consequences for the ethics
mm politics, economics, ecology, medicine, and biological, computational, and
information sciences. These ethical consequences strongly depend on our
knowledge about complex nonlinear dynamics in nature and society, but
they are not derived from the principles of complex systems, Thus, we do
not defend any kind of ethical naturalism or reductionisra. Dynamical mod-
els of urban developments, global ecologies, human organs, or information
u.o?.omwm only deliver possible scenarios with different attractors. It is a ques-
tion for us to evaluate which attractor we should prefer ethically and help to
H,mwm.Na by achievement of the appropriate conditions. Immanuel Kant sum-
marized the problems of philosophy in the three famous questions [8.26]:

What can I know?
What must I do?
What may I hope?

. The first question concerns epistemology with the possibilities and limi-
tations of our recognition. The theory of complex systems explains what we
can wno.s. and what we cannot know about nonlinear dynamics in nature
.mna society. In general, the question invites a demand for scientific research
in order fo improve our knowledge about complexity and evolution. ’

The wmo.oﬁ.a msnmmou concerns ethics and the evaluation of our actions.
In general, it invites a demand for sensitivity in dealing with highly sensitive
aoﬁmﬁx mwmaa.m in nature and society. We should neither overact nor retire
becauise overaction as well as retirement can push the system from one owmoa.m
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state to another, We should be both cautious and courageous, mnoon.&am to
the conditions of nonlinearity and complexity in evolution. In vo_Enm. we
should be aware that any kind of mono-causality may lead to dogmatism,
. ance, and fanaticism.

ESWMME»W meﬁ question “What may we hope?”’ concerns G.o Greatest Goaod,
which has traditionally been discussed as surnmum bonum 1 the ﬁgomvomg
of religion. At first glance, it seems to be beyond Ea.mﬁw@ of complex
systems, which only allows us to derive mwo,o&.mommmﬁom in the long run
and short-term forecasts under particular conditions. But when we consider

the long sociocultural evolution of mankind, the greatest good that people-

have struggled for has been the dignity of ﬁ.rmw mﬁmomﬁ life. .A,Em does not
depend on individual abilities, the degree of intelligence, or social m%mammmm
acquired by the contingencies of birth. It has been a free act m;. E.Hﬁmn uma -
determination in a stream of nonlinearity and .HmnaoBbm.% in Em”oﬂw. We
have to project the Greatest Good on an ongoing evolution of increasmg

complexity.
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